Taiwanese Journal of Mathematics

SENSITIVITY ANALYSIS OF SOLUTION MAPPINGS OF PARAMETRIC GENERALIZED QUASI VECTOR EQUILIBRIUM PROBLEMS

Kenji Kimura and Jen-Chih Yao

Full-text: Open access

Abstract

In this paper, we study the parametric generalized quasi vector equilibrium problem (PGQVEP). We investigate existence of solution for PGQVEP and continuities of the solution mappings of PGQVEP. In particular, resulta concerning the lower semicontinuity of the solution mapping of PGQVEP are presented.

Article information

Source
Taiwanese J. Math., Volume 12, Number 9 (2008), 2233-2268.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500405178

Digital Object Identifier
doi:10.11650/twjm/1500405178

Mathematical Reviews number (MathSciNet)
MR2479054

Zentralblatt MATH identifier
1169.49026

Subjects
Primary: 49J40: Variational methods including variational inequalities [See also 47J20] 49K40: Sensitivity, stability, well-posedness [See also 90C31] 90C31: Sensitivity, stability, parametric optimization

Keywords
parametric generalized quasi vector equilibrium problem solution mapping upper semicontinuity lower semicontinuity

Citation

Kimura, Kenji; Yao, Jen-Chih. SENSITIVITY ANALYSIS OF SOLUTION MAPPINGS OF PARAMETRIC GENERALIZED QUASI VECTOR EQUILIBRIUM PROBLEMS. Taiwanese J. Math. 12 (2008), no. 9, 2233--2268. doi:10.11650/twjm/1500405178. https://projecteuclid.org/euclid.twjm/1500405178


Export citation

References

  • C. Berge, Topological Space, Oliver& Boyd, Edinburgh and London, 1963.
  • F. Ferro, A Minimax Theorem for Vector-Valued Functions, J. Optim. Theory Appl., 60(1) (1989), 19-31.
  • Y. P. Fang and N-J. Huang, Existence of Solutions to Generalized Vector Quasi-Equilibrium Problems with Discontinuous Mappings, Acta Math. Sin. $($Engl.$|$Ser.$)$, 22(4) (2006), 1127-1132.
  • F. Ferro, Optimization and Stability Results Through Cone Lower Semicontinuity, Set-Valued Anal., 5 (1997), 365-375.
  • S. H. Hou, H. Yu, and G. Y. Chen, On Vector-Quasi-Equilibrium Problems with Set-Valued Maps, J. Optim. Theory Appl., 119(3) (2003), 485-498.
  • K. Kimura, Y. C. Liou, and J. C. Yao, A Parametric Equilibrium Problem with Applications to Optimization Problems under Equilibrium Constraints, J. Nonlinear and Convex Anal., 7(2) (2006), 237-243.
  • K. Kimura and J. C. Yao, Sensitivity Analysis of Vector Equilibrium problems, Taiwanese J. Math., 12(3) (2008), 649-669.
  • D. T. Luc, Theory of Vector Optimization: Lecture Notes in Economics and Mathematical Systems, Springer-Verlag Berlin Heidelberg, 1989.
  • J. W. Peng and D. L. Zhu, Generalized vector quasi-equilibrium problems with set-valued mappings, J. Inequal. Appl., Vol. 2006 (2006), Article ID 59387, 11 pages.
  • W. Takahashi, Nonlinear Functional Analysis -Fixed Point Theory and its Applications, Yokohama Publishers Yokohama, 2000).
  • G. Tian, Generalized Quasi-Variational-Like Inequality Problem, Math. Oper. Res., 18 (1993), 213-225.
  • L. C. Zeng and J. C. Yao, An existence result for generalized vector equilibrium problems without pseudomonotonicity, Appl. Math. Lett., 19 (2006), 1320-1326.
  • K. Kimura and J. C. Yao, Semicontinuity of solution mappings of parametric generalized vector equilibrium problems, J. Optim. Theory Appl., 138(3) (2008), 429-443.
  • [14.] K. Kimura and J. C. Yao, Semicontinuity of solution mappings of parametric generalized vector equilibrium problems, J. Ind. Manag. Optim. 4(1) (2008), 167-181.
  • [15.] K. Kimura, Y. C. Liou, S. Y. Wu and J. C. Yao, Well-posedness for parametric vector equilibrium problems with applications, J. Ind. Manag. Optim. 4(2) (2008), 313-327.
  • [16.] X. H. Gong, K. Kimura and J. C. Yao, Sensitivity analysis of strong vector equilibrium problems, J. Nonlinear Convex Anal. 9(1) (2008), 83-94.