Taiwanese Journal of Mathematics

NEW ACCURACY CRITERIA FOR MODIFIED APPROXIMATE PROXIMAL POINT ALGORITHMS IN HILBERT SPACES

Lu-Chuan Ceng, Soon-Yi Wu, and Jen-Chih Yao

Full-text: Open access

Abstract

This paper proposes a modified approximate proximal point algorithm to solve the problem of finding zeros of a maximal monotone operator in a Hilbert space. New accuracy criteria are imposed. Weak and strong convergence results are established.

Article information

Source
Taiwanese J. Math., Volume 12, Number 7 (2008), 1691-1705.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500405080

Digital Object Identifier
doi:10.11650/twjm/1500405080

Mathematical Reviews number (MathSciNet)
MR2449657

Zentralblatt MATH identifier
1215.47061

Subjects
Primary: 47J25: Iterative procedures [See also 65J15] 47H05: Monotone operators and generalizations

Keywords
proximal point algorithms monotone operators inexact methods

Citation

Ceng, Lu-Chuan; Wu, Soon-Yi; Yao, Jen-Chih. NEW ACCURACY CRITERIA FOR MODIFIED APPROXIMATE PROXIMAL POINT ALGORITHMS IN HILBERT SPACES. Taiwanese J. Math. 12 (2008), no. 7, 1691--1705. doi:10.11650/twjm/1500405080. https://projecteuclid.org/euclid.twjm/1500405080


Export citation

References

  • \item[1.] S. Aizicovici and Y. Q. Chen, Note on the topological degree of the subdifferential of a lower semi-continuous convex function, Proc. Amer. Math. Soc., 126 (1998), 2905-2908.
  • \item[2.] H. Brezis, Operateurs Maximaux Monotone et Semi-Groups de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973.
  • \item[3.] R. S. Burachik, A. N. Iusem and B. F. Svaiter, Enlargement of monotone operators with applications to variational inequalities, Set-Valued Anal., 5 (1997), 159-180.
  • \item[4.] Y. Censor and S. A. Zenios, The proximal minimization algorithm with $D$-functions, J. Optim. Theory Appl., 73 (1992), 451-464.
  • \item[5.] G. Chen and M. Teboulle,A proximal-based decomposition method for convex minimization problems, Math. Programming, 64 (1994), 81-101.
  • \item[6.] Y. Q. Chen, A generalization of the zero point theorem of maximal monotone mappings, Acta Math. Sinica, 38 (1995), 831-836.
  • \item[7.] S. S.Chang and Y. J. Cho, et al., Generalized set-valued variational inclusions in Banach spaces, J. Math. Anal. Appl., 246 (2000), 409-422.
  • \item[8.] G. Cohen, Auxiliary problem principle extended to variational inequalities, J. Optim. Theory Appl., 59 (1998), 325-333.
  • \item[9.] P. J. da Silva e Silva, J. Eckstein and C. Humes, Rescaling and Stepsize Selection in Proximal Methods Using Separable Generalized Distance, RUTCOR Research Report RRR 35-99, Rutgers University, 1999.
  • \item[10.] R. S. Dembo, S. C. Eisenstat and T. Steihaug, Inexact Newton Methods, SIMA J. Numer. Anal., 19 (1982), 400-408.
  • \item[11.] J. Eckstein, Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming, Math. Oper. Res., 18 (1993), 202-226.
  • \item[12.] J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal points algorithm for maximal monotone operators, Math. Programming, 55 (1992), 293-318.
  • \item[13.] J. Eckstein, Approximate iterations in Bregman-function-based proximal algorithms, Math. Programming, 83 (1998), 113-123.
  • \item[14.] D. R. Han and B. S. He, A new accuracy criterion for approximate proximal point algorithms, J. Math. Anal. Appl., 263 (2001), 343-354.
  • \item[15.] B. S. He, Inexact implicit methods for monotone general variational inequalities, Math. Programming, 86 (1999), 199-217.
  • \item[16.] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1973.
  • \item[17.] K. C. Kiwiel, Proximal minimization methods with generalized Bregman functions, SIAM J. Control Optim., 35 (1997), 1142-1168.
  • \item[18.] M. Kyono and M. Fukushima, Nonlinear proximal decomposition method for convex programming, J. Optim. theory Appl., 106 (2000), 357-372.
  • \item[19.] J. S. Pang, Inexact Newton methods for the nonlinear complementarity problem, Math. Programming, 36 (1986), 54-71.
  • \item[20.] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877-898.
  • \item[21.] M. V. Solodov and B. F. Svaiter, A hybrid projection-proximal point algorithm, J. Convex Anal., 6 (1999), 59-70.
  • \item[22.] M. V. Solodov and B. F. Svaiter, A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator, Set-valued Anal., 7 (1999), 323-345.
  • \item[23.] M. V. Solodov and B. F. Svaiter, An inexact hybrid generalized proximal point algorithm and some new result on the theory of Bregman functions, Math. Oper. Res., 25 (2000), 214-230.
  • \item[24.] K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., 178 (1993), 301-308.
  • \item[25.] M. Teboulle, Convergence of proximal-like algorithms, SIAM J. Optim., 7 (1997), 1069-1083.
  • \item[26.] H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66(2) (2002), 240-256.
  • \item[27.] E. H. Zarantonello, Projections on convex sets in Hilbert space and spectral theory, in: Contributions to Nonlinear Functional Analysis, (ed. by E. H. Zarantonello), Academic Press, New York, NY, 1971.