Taiwanese Journal of Mathematics

INTEGRAL RICCI CURVATURES, VOLUME COMPARISON AND FUNDAMENTAL GROUPS OF COMPACT RIEMANNIAN MANIFOLDS

Seong-Hun Paeng

Full-text: Open access

Abstract

We obtain a relative volume comparison estimate in the universal covering space under bounds on the integral Ricci curvature and the weak $C^1$-norm of metric. From this volume comparison, we obtain similar results on the fundamental group as in [1,7,8].

Article information

Source
Taiwanese J. Math., Volume 11, Number 4 (2007), 1237-1250.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500404816

Digital Object Identifier
doi:10.11650/twjm/1500404816

Mathematical Reviews number (MathSciNet)
MR2348565

Zentralblatt MATH identifier
1148.53024

Subjects
Primary: 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20]
Secondary: 53C23: Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces

Keywords
integral Ricci curvature volume comparison

Citation

Paeng, Seong-Hun. INTEGRAL RICCI CURVATURES, VOLUME COMPARISON AND FUNDAMENTAL GROUPS OF COMPACT RIEMANNIAN MANIFOLDS. Taiwanese J. Math. 11 (2007), no. 4, 1237--1250. doi:10.11650/twjm/1500404816. https://projecteuclid.org/euclid.twjm/1500404816


Export citation