Taiwanese Journal of Mathematics

ON HOLLOW-LIFTING MODULES

Nil Orhan, Derya Keskin Tütüncü, and Rachid Tribak

Full-text: Open access

Abstract

Let $R$ be any ring and let $M$ be any right $R$-module. $M$ is called hollow-lifting if every submodule $N$ of $M$ such that $M/N$ is hollow has a coessential submodule that is a direct summand of $M$. We prove that every amply supplemented hollow-lifting module with finite hollow dimension is lifting. It is also shown that a direct sum of two relatively projective hollowlifting modules is hollow-lifting.

Article information

Source
Taiwanese J. Math., Volume 11, Number 2 (2007), 545-568.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500404708

Digital Object Identifier
doi:10.11650/twjm/1500404708

Mathematical Reviews number (MathSciNet)
MR2333365

Zentralblatt MATH identifier
1130.16001

Subjects
Primary: 16L99: None of the above, but in this section 16D99: None of the above, but in this section

Keywords
hollow-lifting module h-small projective module

Citation

Orhan, Nil; Tütüncü, Derya Keskin; Tribak, Rachid. ON HOLLOW-LIFTING MODULES. Taiwanese J. Math. 11 (2007), no. 2, 545--568. doi:10.11650/twjm/1500404708. https://projecteuclid.org/euclid.twjm/1500404708


Export citation