Taiwanese Journal of Mathematics

BOUNDEDNESS OF COMMUTATORS WITH LIPSCHITZ FUNCTIONS IN NON-HOMOGENEOUS SPACES

Yan Meng and Dachun Yang

Full-text: Open access

Abstract

Under the assumption that $\mu$ is a non-doubling measure on $\mathbb{R}^d$, the authors obtain the boundedness of commutators generated by Calderón-Zygmund operators or fractional integrals with Lipschitz functions in the Lebesgue space and the Hardy space.

Article information

Source
Taiwanese J. Math., Volume 10, Number 6 (2006), 1443-1464.

Dates
First available in Project Euclid: 18 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1500404567

Digital Object Identifier
doi:10.11650/twjm/1500404567

Mathematical Reviews number (MathSciNet)
MR2275138

Zentralblatt MATH identifier
1131.47034

Subjects
Primary: 47B47: Commutators, derivations, elementary operators, etc.
Secondary: 43A99: None of the above, but in this section

Keywords
commutator Calderón-Zygmund operator fractional integral Lipschitz space Lebesgue space Hardy space

Citation

Meng, Yan; Yang, Dachun. BOUNDEDNESS OF COMMUTATORS WITH LIPSCHITZ FUNCTIONS IN NON-HOMOGENEOUS SPACES. Taiwanese J. Math. 10 (2006), no. 6, 1443--1464. doi:10.11650/twjm/1500404567. https://projecteuclid.org/euclid.twjm/1500404567


Export citation

References

  • [1.] W. Chen and E. T. Sawyer, A note on commutators of fractional integrals with $RBMO(\mu)$ functions, Illinois Math. J. 46 (2002), 1287-1298.
  • [2.] J. Garcriptsize\'la-Cuerva and A. E. Gatto, Lipschitz spaces and Calderón-Zygmund operators associated to non-doubling measures, Publ. Mat., 49 (2005), 285-296.
  • [3.] J. Garcriptsize\'la-Cuerva and A. E. Gatto, Boundedness properties of fractional integral operators associated to non-doubling measures, Studia Math. 162 (2004), 245-261.
  • [4.] J. Garcriptsize\'la-Cuerva and J. Martell, Two-weight norm inequalities for maximal operators and fractional integrals on non-homogeneous spaces, Indiana Univ. Math. J. 50 (2001), 1241-1280.
  • [5.] E. Harboure, C. Segovia and J. L. Torrea, Boundedness of commutators of fractional and singular integrals for the extreme values of $p$, Illinois J. Math. 41 (1997), 676-700.
  • [6.] G. Hu, Y. Meng and D. Yang, Multilinear commutators of singular integrals with non doubling measures, Integral Equations Operator Theory, 51 (2005), 235-255.
  • [7.] G. Hu, Y. Meng and D. Yang, New atomic characterization of $H^1$ space with non-doubling measures and its applications, Math. Proc. Cambridge Philos. Soc., 138 (2005), 151-171.
  • [8.] S. T. Krantz and S. Y. Li, Boundedness and compactness if integral operators on spaces of homogeneous type and applications. I, J. Math. Anal. Appl. 258 (2001), 629-641.
  • [9.] S. T. Krantz and S. Y. Li, Boundedness and compactness if integral operators on spaces of homogeneous type and applications. II, J. Math. Anal. Appl. 258 (2001), 642-657.
  • [10.] S. Lu, Q. Wu and D. Yang, Boundedness of commutators on Hardy type spaces, Sci. China (Ser. A) 45 (2002), 984-997.
  • [11.] F. Nazarov, S. Treil and A. Volberg, Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices 15 (1997), 703-726.
  • [12.] F. Nazarov, S. Treil and A. Volberg, Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices 9 (1998), 463-487.
  • [13.] F. Nazarov, S. Treil and A. Volberg, Accretive system $Tb$-theorems on nonhomogeneous spaces, Duke Math. J. 113 (2002), 259-312.
  • [14.] J. Orobitg and C. Pérez, $A_p$ weights for nondoubling measures in ${\Bbb R}^n$ and applications, Trans. Amer. Math. Soc. 354 (2002), 2013-2033.
  • [15.] X. Tolsa, Cotlar's inequality without the doubling condition and existence of principal values for the Cauchy integral of measures, J. Reine Angew. Math. 502 (1998), 199-235.
  • [16.] X. Tolsa, A $T(1)$ theorem for non-doubling measures with atoms, Proc. London Math. Soc. 82 (2001), 195-228.
  • [17.] X. Tolsa, $BMO$, $H^1$ and Calderón-Zygmund operators for non doubling measures, Math. Ann. 319 (2001), 89-149.
  • [18.] X. Tolsa, Littlewood-Paley theory and the $T(1)$ theorem with non-doubling measures, Adv. Math. 164 (2001), 57-116.
  • [19.] X. Tolsa, The space $H^1$ for nondoubling measures in terms of a grand maximal operator, Trans. Amer. Math. Soc. 355 (2003), 315-348.
  • [20.] X. Tolsa, A proof of the weak $(1,1)$ inequality for singular integrals with non doubling measures based on a Calderón-Zygmund decomposition, Publ. Mat. 45 (2001), 163-174.
  • [21.] X. Tolsa, Painlevé's problem and the semiadditivity of analytic capacity, Acta Math. 190 (2003), 105-149.
  • [22.] J. Verdera, The fall of the doubling condition in Calderón-Zygmund theory, Publ. Mat. Vol. Extra (2002), 275-292.