Taiwanese Journal of Mathematics


Der-Chen Chang and Cora Sadosky

Full-text: Open access


$BMO$, the space of functions of bounded mean oscillation, was first introduced by F. John and L. Nirenberg in 1961. It became a focus of attention when C. Fefferman proved that $BMO$ is the dual of the (real) Hardy space $H^1$ in 1971. In the past 30 years, this space was studied extensively by many mathematicians. With the help of $BMO$, many phenomena can be characterized clearly. In this review we discuss the connections between $BMO$ functions, the sharp function operator, Carleson measures, atomic decompositions and commutator operators in $\mathbf{R}^n$. We strive to cover some of the main developments in the theory, including $BMO$ in a bounded Lipschitz domain in $\mathbf{R}^n$ and in the product space $\mathbf{R} \times \mathbf{R}$.

Article information

Taiwanese J. Math., Volume 10, Number 3 (2006), 573-601.

First available in Project Euclid: 18 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 42B30: $H^p$-spaces
Secondary: 47B35: Toeplitz operators, Hankel operators, Wiener-Hopf operators [See also 45P05, 47G10 for other integral operators; see also 32A25, 32M15] 32A37: Other spaces of holomorphic functions (e.g. bounded mean oscillation (BMOA), vanishing mean oscillation (VMOA)) [See also 46Exx]

bounded mean oscillation Hardy spaces sharp function operator Carleson measures product spaces


Chang, Der-Chen; Sadosky, Cora. FUNCTIONS OF BOUNDED MEAN OSCILLATION. Taiwanese J. Math. 10 (2006), no. 3, 573--601. doi:10.11650/twjm/1500403848. https://projecteuclid.org/euclid.twjm/1500403848

Export citation


  • [1.] L. Carleson, Interpolation of bounded functions and the corona problem, Ann. Math., 76 (1962), 547-559.
  • [2.] L. Carleson, A counterexample for measure bounded for $H^p$ for the bi-disc, Mittag-Leffler Report, 7 (1974).
  • [3.] L. Carleson. Two remarks on $H^1$ and $BMO$, Adv. Math., 22 (1976), 269-277.
  • [4.] D. C. Chang. The dual of Hardy spaces on a bounded domain in $\R^n$, Forum Math., 6(1) (1994), 65-81.
  • [5.] D. C. Chang. Estimates for singular integral operators with mixed type homogeneities in Hardy classes, Math. Ann., 287(2) (1990), 303-322.
  • [6.] D. C. Chang, S. G. Krantz and E. M. Stein. $H^p$ theory on a smooth domain in $\R^N$ and elliptic boundary value problems, J. Funct. Anal., 114(2) (1993), 286-347.
  • [7.] D. C. Chang, G. Dafni and E. M. Stein. Hardy spaces, $BMO$ and boundary value problems for the Laplacian on a smooth domain in $\R^N$, Trans. Amer. Math. Soc., 351(4) (1999), 1605-1661.
  • [8.] D. C. Chang and S. Y. Li. On the boundedness of multipliers, commutators and the second derivatives of Green's operators on $H^1$ and $BMO$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. $(4)$, XXVIII(2) (1999), 341-356.
  • [9.] D. C. Chang, G. Dafni and C. Sadosky, A divergence-curl lemma in $BMO$ on a domain, Harmonic Analysis Signal Processing and Complexity, eds. by I, Sabadin, D. Struppa and D. Walunt, Progress in Math., 238 (2005), Birkhäuser, 55-65.
  • [10.] S.-Y. A. Chang and R. Fefferman. A continuous version of the duality of $H^1$ and $BMO$ on the bidisk, Ann. of Math., 112 (1980), 179-201.
  • [11.] S.-Y. A. Chang and R. Fefferman. Some recent developments in Fourier analysis and $H^p$ theory on product domains, Bull. Amer. Math. Soc., 12 (1985), 1-43.
  • [12.] R. R. Coifman. A real variable characterization of $H^p$, Studia Math., 51 (1974), 269-274.
  • [13.] R. R. Coifman and C. Fefferman. Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51 (1974), 241-250.
  • [14.] R.R. Coifman, R. Rochberg, and G. Weiss. Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611-635.
  • [15.] R. R. Coifman, Y. Meyer and E. M. Stein. Some new function spaces and their applications to harmonic analysis, J. Funct. Anal., 62(2) (1985), 304-335.
  • [16.] R. R. Coifman, P. L. Lions, Y. Meyer and S. Semmes. Compensated compactness and Hardy spaces, J. Math. Pures Appl., 72 (1993), 247-286.
  • [17.] M. Cotlar and C. Sadosky. Two distinguished subspaces of product $BMO$, and Nehari-AAK theory for Hankel operators on the torus, Int. Eq. Op. Th. \bf26 (1996), 273-304.
  • [18.] G. David and J.-L. Journé. A boundedness criterion for generalized Calderón-Zygmund operators, Ann. Math., 120 (1984), 371-397.
  • [19.] C. Fefferman. Characterizations of bounded mean oscillations, Bull. Amer. Math. Soc., 77 (1971), 587-588.
  • [20.] C. Fefferman and E. M. Stein. $H^p$ spaces of several variables, Acta Math. 129 (1972), 137-193.
  • [21.] R. Fefferman. Calderón-Zygmund theory for product domains-$H^p$ theory, Proc. Natl. Acad. Sci. USA, 83 (1986), 840-843.
  • [22.] S. H. Ferguson and M. Lacey. A characterization of product $BMO$ by commutators, Acta Math., 189 (2002), 143-160.
  • [23.] S. H. Ferguson and C. Sadosky. Characterizations of bounded mean oscillation on the polydisk in terms of Hankel operators and Carleson measures, J. Anal. Math., 81 (2000), 239-267.
  • [24.] D. Goldberg. A local version of real Hardy spaces, Duke Math. J., 46 (1979), 27-42.
  • [25.] R. F. Gundy and E. M. Stein. $H^p$ theory for the polydisc, Proc. Natl. Acad. Sci. USA, 76 (1979), 1026-1029.
  • [26.] Y. S. Han. A problem in $H^p(\R^2_+\times\R^2_+)$, Chinese Science Bulletin, 34 (1989), 617-622.
  • [27.] Y. S. Han. $H^p$ boundedness of Calderón-Zygmund operators for product domains, Harmonic analysis (Tianjin, 1988), Lecture Notes in Math. No. 1494, Springer-Verlag, Berlin, 54-67, (1991).
  • [28.] R. A. Hunt, B. Muckenhoupt and R. Wheeden. Weighted norm inequalities for the conjugate functions and Hilbert transform, Trans. Amer. Math. Soc., 176 (1973), 227-251.
  • [29.] F. John and L. Nirenberg. On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-426.
  • [30.] J.-L. Journé. Calderón-Zygmund operators on product spaces, Rev. Mat. Iberoamer., 1 (1985), 55-91.
  • [31.] J.-L. Journé. A covering lemma for product spaces, Proc. Amer. Math. Soc., 96 (1986), 593-598.
  • [32.] M. Lacey and E. Terwilleger. Third order commutator and product $BMO$, 2003, preprint.
  • [33.] B. Muckenhoupt. Weighted norm inequalities for the Hardy-Littlewood maximal functions, Trans. Amer. Math. Soc., 165 (1976), 207-226.
  • [34.] R. Rochberg and S. Semmes. A decomposition theorem in $BMO$ and applications, J. Funct. Anal., 67 (1986), 228-263.
  • [35.] R. Rochberg and S. Semmes. Nearly weakly orthonormal sequences, singular values estimation and Calderón-Zygmund operators, J. Funct. Anal., 86 (1989), 237-306.
  • [36.] S. Pott and C. Sadosky. Bounded mean oscillation on the bidisk and Operator BMO, J. Funct. Anal., 189 (2002), 475-495.
  • [37.] C. Sadosky. Interpolation of Operators and Singular Integrals, Marcel Dekker, New York-Basel, 1979.
  • [38.] C. Sadosky. The BMO extended family in product spaces, Proceedings of the 2002 Conference on Harmonic Analysis, Calderón-Zygmund and Beyond, Ed. by J. M. Ash, to appear.
  • [39.] E. M. Stein. Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970.
  • [40.] E. M. Stein, Harmonic Analysis - Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, New Jersey, 1993.
  • [41.] E. M. Stein. Singular integrals. The roles of Calderón and Zygmund, Notices Amer. Math. Soc., 45(9) (1998), 1130-1140.
  • [42.] E. M. Stein and G. Weiss. Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, New Jersey, 1971.
  • [43.] N. Varopoulos. $BMO$ function and the $\bar\partial$ equation, Pacific J. Math., 71 (1977), 221-273.