Taiwanese Journal of Mathematics


HaiLin Jin and Qi Guo

Full-text: Open access


In this paper, we study the so-called mean Minkowski measures, proposed and studied by Toth in a series of papers, for convex bodies of constant width. We show that, with respect to the mean Minkowski measure, the completions of regular simplices are, as well as for many other measures, the most asymmetric ones among all convex bodies of constant width.

Article information

Taiwanese J. Math., Volume 18, Number 4 (2014), 1283-1291.

First available in Project Euclid: 10 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 52A20: Convex sets in n dimensions (including convex hypersurfaces) [See also 53A07, 53C45] 52A39: Mixed volumes and related topics

measure of asymmetry mean Minkowski measure convex body of constant width reuleaux triangle Meissner's bodies completion


Jin, HaiLin; Guo, Qi. THE MEAN MINKOWSKI MEASURES FOR CONVEX BODIES OF CONSTANT WIDTH. Taiwanese J. Math. 18 (2014), no. 4, 1283--1291. doi:10.11650/tjm.18.2014.4198. https://projecteuclid.org/euclid.twjm/1499706490

Export citation


  • A. S. Besicovitch, Measures of asymmetry for convex curves, II. Curves of constant width, J. London Math. Soc., 26 (1951), 81-93.
  • T. Bonnesen and W. Fenchel, Theorie der Konvexen Körper, Springer, Berlin, 1934; Engl. transl, Theory of Convex Bodies, BCS Associates, Moscow, USA, 1987.
  • G. D. Charkerian and H. Groemer, Convex bodies of constant width, in: Convexity and Its Applications, 1983, pp. 49-96.
  • H. Groemer, On complete convex bodies, Geom. Dedicata, 20 (1986), 319-334.
  • H. Groemer and L. J. Wallen, A measure of asymmetry for domains of constant width, Beitr. Algebra Geom., 42 (2001), 517-521.
  • B. Grünbaum, Measures of symmetry for convex sets, in: Convexity, Proc. Symposia Pure Math., V. Klee, et al., (eds.), Vol. 7, American Math. Society, Providence, 1963, pp. 233-270.
  • Q. Guo, Stability of the Minkowski measure of asymmetry for convex bodies, Discrete Comput. Geom., 34 (2005), 351-362.
  • Q. Guo, On $p$-measures of asymmetry for convex bodies, Adv. Geom., 12(2) (2012), 287-301.
  • P. C. Hammer and A. Sobczyk, The critical points of a convex body, Bull. Amer. Math. Soc., 57 (1951), 227.
  • E. Heil and H. Martini, Special convex bodies, in: Handbook of Convex Geometry, (P. M. Gruber and J. M. Wills Eds.), North-Holland, Amsterdam, 1993, pp. 347-385.
  • H. L. Jin and Q. Guo, On the asymmetry for convex domains of constant width, Commun. Math. Res., 26(2) (2010), 176-182.
  • H. L. Jin and Q. Guo, Asymmetry of convex bodies of constant width, Discrete Comput. Geom., 47 (2012), 415-423.
  • H. L. Jin and Q. Guo, A note on the extremal bodies of constant width for the Minkowski measure, Geom. Dedicata, 164 (2013), 227-229.
  • B. Kawohl and C. Weber, Meissner's mysterious bodies, Math. Intelligencer, 33(3) (2011), 94-101.
  • V. L. Klee, Jr., The critical set of a convex set, Amer. J. Math., 75 (1953), 178-188.
  • T. Lachand-Robert and E. Oudet, Bodies of constant width in arbitrary dimension, Math. Nachr., 280(7) (2007), 740-750.
  • H. Martini and K. J. Swanepoel, The geometry of Minkowski spaces - a survey, Part II, Expositiones Math., 22 (2004), 93-144.
  • M. Meyer, C. Schutt and E. M. Werner, New affine measures of symmetry for convex bodies, Adv. Math., 228 (2011), 2920-2942.
  • R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 1993.
  • G. Toth, Simplicial intersections of a convex set and moduli for spherical minimal immersions, Michigan Math. J., 52 (2004), 341-359.
  • G. Toth, On the shape of the moduli of shperical minimal immersions, Trans. Amer. Math. Soc., 358(6) (2006), 2425-2446.
  • G. Toth, On the structure of convex sets with symmetries, Geom. Dedicata, 143 (2009), 69-80.
  • G. Toth, Asymmetry of convex sets with isolated extreme points, Proc. Amer. Math. Soc., 137 (2009), 287-295.
  • G. Toth, Fine structure of convex sets from asymmetric viewpoint, Beitr. Algebra Geom., 52 (2011), 171-189.
  • G. Toth, A measure of symmetry for the moduli of spherical minimal immersions, Geom. Dedicata, 160 (2012), 1-14.
  • S. Vrecica, A note on the sets of constant width, Publ. Inst. Math. $($Beograd$)$ $($N. S.$)$, 29(43) (1981), 289-291.