Taiwanese Journal of Mathematics

TOPOLOGICAL ENTROPY OF PROPER MAP

Dongkui Ma and Bin Cai

Full-text: Open access

Abstract

By using the Carathéodory-Pesin structure (C-P structure), the topological entropy on the whole space introduced for a proper map, is generalized to the cases of arbitrary subset, i.e., we introduce three notions of topological entropy. Some of the properties of these notions are provided. As some applications, for the proper map of locally compact separable metric space, we prove the following variational principles: (1) The upper capacity topological entropy on any subset and the minimum of the Bowen-Dinaburg entropies always coincide; (2) For any invariant probability measure, the measure-theoretic entropy and the infimum of the topological entropies on all sets which are of full measures always coincide; (3) The relationship between the topological entropies of level sets of the ergodic average of some continuous functions and the measure-theoretic entropies are given. These are the extensions of results of Patrão and Pesin, etc.

Article information

Source
Taiwanese J. Math., Volume 18, Number 4 (2014), 1219-1241.

Dates
First available in Project Euclid: 10 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1499706486

Digital Object Identifier
doi:10.11650/tjm.18.2014.3339

Mathematical Reviews number (MathSciNet)
MR3245439

Zentralblatt MATH identifier
1357.37008

Subjects
Primary: 37A35: Entropy and other invariants, isomorphism, classification 37B40: Topological entropy 37C45: Dimension theory of dynamical systems

Keywords
proper map admissible cover C-P structure topological entropy variational principle

Citation

Ma, Dongkui; Cai, Bin. TOPOLOGICAL ENTROPY OF PROPER MAP. Taiwanese J. Math. 18 (2014), no. 4, 1219--1241. doi:10.11650/tjm.18.2014.3339. https://projecteuclid.org/euclid.twjm/1499706486


Export citation

References

  • \item[1.] R. Adler, A. Konheim and M. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 303-319.
  • \item[2.] V. Afraimovich, Pesin's dimension for Poincaré recurrences, Chaos, 7 (1997), 12-20.
  • \item[3.] L. Barreira, Y. Pesin and J. Schmeling, On a general concept of multifractality: multifractal spectrum for dimensions, entropies and Lyapunv exponents, multifractal rigidity, Chaos, 7 (1997), 27-38.
  • \item[4.] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.
  • \item[5.] R. Bowen, Topological entropy for non-compact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.
  • \item[6.] C. Carathéodory, Über das Lineare Mass, Göttingen Nachr, 1914, pp. 406-426.
  • \item[7.] E. Chen, T. Küpper and L. Shu, Topological entropy for divergence points, Ergodic Theory Dynam. Systems, 25 (2005), 1173-1208.
  • \item[8.] X. Dai and Y. Jiang, Distance entropy of dynamical systems on noncompact-phase spaces, Discrete Contin. Dyn. Syst., 20 (2008), 313-333.
  • \item[9.] D. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254.
  • \item[10.] E. I. Dinaburg, The relation between topological entropy and metric entropy, Soviet Math. Dokl., 11 (1970), 13-16.
  • \item[11.] E. Glasner and X. Ye, Local entropy theory, Ergodic Theory Dynam. Systems, 29 (2009), 321-356.
  • \item[12.] D. Ma and M. Wu, Topological pressure and topological entropy of a semigroup of maps, Discrete Contin. Dyn. Syst, 31 (2011), 545-557.
  • \item[13.] M. Patrão, Entropy and its variational principle for non-compact metric spaces, Ergodic Theory Dynam. Systems, 30 (2010), 1529-1542.
  • \item[14.] Y. Pesin and B. Pitskel, Topological pressure and the variational principle for non-compact sets, Funct. Anal. Appl., 18(4) (1984), 50-63.
  • \item[15.] Y. Pesin, Dimension Theory in Dynamical Systems, Chicago: The University of Chicago Press, 1997.
  • \item[16.] F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certain non-compact sets, Ergodic Theory Dynam. Systems, 23 (2003), 317-348.
  • \item[17.] P. Walters, An Introduction to Ergodic Theory, Spring, Berlin, 1981.
  • \item[18.] Z. Wei, Y. Wang and G. Wei, A new entropy: co-compact entropy, Science Journal of Northwest University Online, 7 (2009), 1-13.