Taiwanese Journal of Mathematics


Guowei Zhang and Jian Wang

Full-text: Open access


In this paper, we prove that the transcendental entire solution of complex linear differential equation $f^{(k)}-e^{P(z)}f=Q(z)$, where $P(z)$ is a transcendental entire function and $Q(z)$ is a polynomial, is of infinite hyper-order under the hypothesis that the Fatou set of $P(z)$ has a multiply connected component.

Article information

Taiwanese J. Math., Volume 18, Number 4 (2014), 1063-1069.

First available in Project Euclid: 10 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 30D05: Functional equations in the complex domain, iteration and composition of analytic functions [See also 34Mxx, 37Fxx, 39-XX] 30D35: Distribution of values, Nevanlinna theory

complex differential equation Fatou set hyper-order


Zhang, Guowei; Wang, Jian. THE INFINITE GROWTH OF SOLUTIONS OF COMPLEX DIFFERENTIAL EQUATIONS OF WHICH COEFFICIENT WITH DYNAMICAL PROPERTY. Taiwanese J. Math. 18 (2014), no. 4, 1063--1069. doi:10.11650/tjm.18.2014.3902. https://projecteuclid.org/euclid.twjm/1499706476

Export citation


  • I. N. Baker, Multiply-connected domains of normality in iteration theory, Math. Z., 81 (1963), 206-214.
  • I. N. Baker, The domains of normality of an entire function, Ann. Acad. Sci. Fenn. Ser. AI Math., 1 (1975), 277-283.
  • I. N. Baker, An entire function which has wandering domains, J. Australian Math. Soc. $($Ser. A$)$, 22 (1976), 173-176.
  • P. D. Barry, Some theorems related to the $\cos \pi\rho$ theorem, Proc. London Math. Soc., 21 (1970), 334-360.
  • W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. $($N.S.$)$, 29 (1993), 151-188.
  • R. Brück, On entire functions which share one value CM with their first derivative, Results Math., 30 (1996), 21-24.
  • T. B. Cao, Growth of solutions of a class of complex differential equations, Ann. Polon. Math., 95(2) (2009), 141-152.
  • Z. X. Chen and S. A. Gao, The complex oscillation theory of certain non-homogeneous linear differential equations with transcendental entire coeffcients, J. Math. Anal. Appl., 179 (1993), 403-416.
  • Z. X. Chen and K. H. Shon, On conjecture of R. Brück concerning the entire function sharing one value CM with its derivative, Taiwanese J. Math., 8 (2004), 235-244.
  • Z. X. Chen and C. C. Yang, Some further results on the zeros and growths of entire solutions of second order linear differential equations, Kodai Math. J., 22 (1999), 273-285.
  • A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier $($Grenoble$)$, 42 (1992), 989-1020.
  • G. G. Gundersen and L. Z. Yang, Entire functions that share one value with one or two of their derivatives, J. Math. Anal. Appl., 223 (1998), 88-95.
  • W. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
  • I. Laine, Nevanlinna Theory and Complex Differential Equations, de Gruyter, Berlin, 1993.
  • L. Z. Yang, Entire functions that share one value with one of their derivatives, in: Finite or Infinite Dimensional Complex Analysis, (Fukuoka 1999), Lecture Notes in Pure Appl. Math. 214, Dekker, New York, 2000, pp. 617-624.
  • L. Z. Yang, The growth of linear differential equations and their applications, Israel J. Math., 147 (2005), 359-370.
  • L. Yang, Value Distribution Theory, Springer-Verlag, Berlin, 1993.
  • C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Science Press/Kluwer Academic Punlishers, Beijing/Dordrecht, 2003.
  • J. H. Zheng, On multiply-connected Fatou components in iteration of meromorphic functions, J. Math. Anal. Appl., 313 (2006), 24-37.
  • J. H. Zheng, Dynamics of Meromorphic Functions $($Chinese$)$, Tsinghua University Press, Beijing, 2006.