Taiwanese Journal of Mathematics


G. A. Afrouzi and M. Mirzapour

Full-text: Open access


In this paper, we study the nonlocal anisotropic $\overrightarrow{p}(x)$-Laplacian problem of the following form \begin{gather*} - \sum_{i=1}^N M_{i} \Big( \int_{\Omega} \frac{|\partial_{x_i} u|^{p_i(x)}}{p_i(x)} dx \Big) \partial_{x_i} \Big( |\partial_{x_i} u|^{p_i(x)-2} \partial_{x_i} u \Big) = f(x,u) \quad \text{in } \Omega, \\ u=0 \quad \text{on } \partial \Omega. \end{gather*} By means of a direct variational approach and the theory of the anisotropic variable exponent Sobolev space, we obtain the existence and multiplicity of weak energy solution. Moreover, we get much better results with $f$ in a special form.

Article information

Taiwanese J. Math., Volume 18, Number 1 (2014), 219-236.

First available in Project Euclid: 10 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35J62: Quasilinear elliptic equations 35J70: Degenerate elliptic equations 46E35: Sobolev spaces and other spaces of "smooth" functions, embedding theorems, trace theorems

anisotropic Sobolev spaces variable exponent mountain pass theorem Fountain theorem dual Fountain theorem


Afrouzi, G. A.; Mirzapour, M. EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR NONLOCAL $\overrightarrow{p}(x)$-LAPLACIAN PROBLEM. Taiwanese J. Math. 18 (2014), no. 1, 219--236. doi:10.11650/tjm.18.2014.2596. https://projecteuclid.org/euclid.twjm/1499706339

Export citation


  • A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal., 14 (1973), 349-381.
  • H. Brezis, Analyse Fonctionnelle, Th$\acute{e}$orie M$\acute{e}$thodes et Applications, Masson, Paris, 1992.
  • Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66(4) (2006), 1383-1406.
  • L. Diening, Theoretical and numerical Results for Electrorheological Fluids, PhD. thesis, University of Frieburg, Germany, 2002.
  • D. E. Edmunds and J. RÁkosn\'Ik, Sobolev embedding with variable exponent, Studia Math., 143 (2000), 267-293.
  • X. L. Fan and X. Y. Han, Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\mathbb{R}^{N}$, Nonlinear Anal., 59 (2004), 173-188.
  • X. L. Fan and D. Zhao, On the spaces $L^{p(x)}$ and $W^{m,p(x)}$, J. Math. Anal. Appl., 263 (2001), 424-446.
  • X. L. Fan, On nonlocal $p(x)$-Laplacian Dirichlet problems, Nonlinear Anal., 72 (2010), 3314-3323.
  • X. L. Fan, On nonlocal $\overrightarrow{p}(x)$-Laplacian equations, Nonlinear Anal., 73 (2010), 3364-3375.
  • E. Guo and P. Zhao, Existence and multiplicity of solutions for nonlocal $p(x)$-Laplacian problems in $\R^N$, Bound. value probl., 2012 (2012), 1-15.
  • G. Kirchhoff, Mechanik, Teubner, Leipzig, Germany, 1883.
  • O. KovÁ\ptmrs Čik and J. RÁkosn\'Ik, On spaces $L^{p(x)}$ and $W^{1,p(x)}$, Czechoslovak Math. J., 41 (1991), 592-618.
  • M. Mih\ptmrs Ăilescu, P. Pucci and V. R\ptmrs Ădulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340(1) (2008), 687-698.
  • K. R. Rajagopal and M. Ruzika, Mathematical modeling of electrorheological fluids, Continuum Mech. Thermodyn, 13 (2001), 59-78.
  • M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics 1748, Springer-Verlag, Berlin, 2000.
  • M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
  • J. F. Zhao, Structure Theory of Banach Spaces $($in Chinese$)$, Wuhan University Press, Wuhan, 1991.
  • V. V. Zhikov, On Lavrentiev's phenomenon, Russian J. Math. Phys., 3 (1995), 249-269.
  • V. V. Zhikov, On some variational problem, Russian J. Math. Phys., 5 (1997), 105-116.