Taiwanese Journal of Mathematics

ALGORITHMIC AND ANALYTICAL APPROACHES TO THE SPLIT FEASIBILITY PROBLEMS AND FIXED POINT PROBLEMS

Yeong-Cheng Liou, Li-Jun Zhu, Yonghong Yao, and Chiuh-Cheng Chyu

Full-text: Open access

Abstract

The split feasibility problem and fixed point problem is considered. New algorithm is presented for solving this split problem. Some analytical techniques are demonstrated and strong convergence results are obtained.

Article information

Source
Taiwanese J. Math., Volume 17, Number 5 (2013), 1839-1853.

Dates
First available in Project Euclid: 10 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1499706241

Digital Object Identifier
doi:10.11650/tjm.17.2013.3175

Mathematical Reviews number (MathSciNet)
MR3106046

Zentralblatt MATH identifier
1300.47107

Subjects
Primary: 47J25: Iterative procedures [See also 65J15] 47H09: Contraction-type mappings, nonexpansive mappings, A-proper mappings, etc. 65J15: Equations with nonlinear operators (do not use 65Hxx) 90C25: Convex programming

Keywords
split feasibility problem fixed point nonexpansive mapping strong convergence

Citation

Liou, Yeong-Cheng; Zhu, Li-Jun; Yao, Yonghong; Chyu, Chiuh-Cheng. ALGORITHMIC AND ANALYTICAL APPROACHES TO THE SPLIT FEASIBILITY PROBLEMS AND FIXED POINT PROBLEMS. Taiwanese J. Math. 17 (2013), no. 5, 1839--1853. doi:10.11650/tjm.17.2013.3175. https://projecteuclid.org/euclid.twjm/1499706241


Export citation

References

  • C. Byrne, Iterative oblique projection onto convex subsets and the split feasibility problem, Inverse Problems, 18 (2002), 441-453.
  • C. Byrne, Bregman-Legendre multidistance projection algorithms for convex feasibility and optimization, in: Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, (D. Butnariu, Y. Censor and S. Reich, eds.), Elsevier, Amsterdam, The Netherlands, 2001, pp. 87-100.
  • Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239.
  • Y. Censor, T. Bortfeld, B. Martin and A. Trofimov, A unified approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353-2365.
  • Y. Censor and A. Segal, The split common fixed point problem for directed operators, J. Convex Anal., 16 (2009), 587-600.
  • L. C. Ceng, Q. H. Ansari and J. C. Yao, An extragradient method for split feasibility and fixed point problems, Comput. Math. Appl., 64 (2012), 633-642.
  • Y. Dang and Y. Gao, The strong convergence of a KM-CQ-like algorithm for a split feasibility problem, Inverse Problems, 27 (2011), 015007, 9 pages.
  • G. Lopez, V. Mart\ptmrs ín-Márquez and H. K. Xu, Iterative Algorithms for the Multiple-Sets Split Feasibility Problem, problem, in: Y. Censor, M. Jiang, G. Wang (eds.), Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning and Inverse Problems, Medical Physics Publishing, Madison, Wisconsin, USA, 2009, pp. 243-279.
  • A. Moudafi, A note on the split common fixed-point problem for quasi-nonexpansive operators, Nonlinear Anal., 74 (2011), 4083-4087.
  • F. Wang and H. K. Xu, Approximating curve and strong convergence of the CQ algorithm for the split feasibility problem, J. Inequal. Appl., 2010, (2010), Article ID 102085, 13 pages.
  • H. K. Xu, A variable Krasnosel'skii-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems, 22 (2006), 2021-2034.
  • H. K. Xu, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Problems, 26 (2010), 105018, 17 pp.
  • Q. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse Problems, 20 (2004), 1261-1266.
  • Y. Yao, J. Wu and Y. C. Liou, Regularized methods for the split feasibility problem, Abst. Appl. Anal., Vol. 2012, Article ID 140679, 15 pages.
  • Y. Yao, T. H. Kim, S. Chebbi and H. K. Xu, A modified extragradient method for the split feasibility and fixed point problems, J. Nonlinear Convex Anal., 13 (2012), 383-396.
  • J. Zhao and Q. Yang, Several solution methods for the split feasibility problem, Inverse Problems, 21 (2005), 1791-1799.
  • A. Moudafi, Viscosity approximations methods for fixed-points problems, J. Math. Anal. Appl., 241 (2000), 46-55.
  • A. Moudafi and P.E. Mainge, Towards viscosity approximations of hierarchical fixed point problems, Fixed Point Theory and Applications, 2006, (2006), Article ID 95453, Pages 1-10.
  • G. Marino and H. K. Xu, A general iterative method for nonexpansive mappings in Hilbert space, J. Math. Anal. Appl., 318 (2006), 43-52.
  • T. Suzuki, Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., 2005, (2005), 103-123.
  • K. Geobel and W. A. Kirk, “Topics in Metric Fixed Point Theory,” Cambridge Studies in Advanced Mathematics, Vol. 28, Cambridge University Press, 1990.
  • H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240-256.
  • A. Petrusel and J. C. Yao, Viscosity approximation to common fixed points of families of nonexpansive mappings with generalized contractions mappings, Nonlinear Anal., 69 (2008), 1100-1111.
  • L. C. Ceng, S. M. Guu and J. C. Yao, Hybrid viscosity-like approximation methods for nonexpansive mappings in Hilbert spaces, Comput. Math. Appl., 58 (2009), 605-617.
  • Y. J. Cho and X. Qin, Convergence of a general iterative method for nonexpansive mappings in Hilbert spaces, J. Comput. Appl. Math., 228 (2009), 458-465.
  • S. S. Chang, Viscosity approximation methods for a finite family of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 323 (2006), 1402-1416.
  • H. Zegeye and N. Shahzad, Viscosity approximation methods for a common fixed point of finite family of nonexpansive mappings, Appl. Math. Comput., 191 (2007), 155-163.
  • J. S. Jung, Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 302 (2005), 509-520.
  • Y. Yao and N. Shahzad, New methods with perturbations for non-expansive mappings in Hilbert spaces, Fixed Point Theory and Applications, 2011, (2011), doi:10.1186/1687-1812-2011-79.
  • S. A. Hirstoaga, Iterative selection methods for common fixed point problems, J. Math. Anal. Appl., 324 (2006), 1020-1035.