Taiwanese Journal of Mathematics

NONDECREASING SOLUTIONS OF A QUADRATIC INTEGRAL EQUATION OF VOLTERRA TYPE

Tao Zhu, Chao Song, and Gang Li

Full-text: Open access

Abstract

Using the theory of measures of noncompactness and applying a new method, we prove the existence of nondecreasing solutions of a quadratic integral equation of Volterra type in $C(I)$.

Article information

Source
Taiwanese J. Math., Volume 17, Number 5 (2013), 1715-1725.

Dates
First available in Project Euclid: 10 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1499706234

Digital Object Identifier
doi:10.11650/tjm.17.2013.2922

Mathematical Reviews number (MathSciNet)
MR3106039

Zentralblatt MATH identifier
1290.45003

Subjects
Primary: 45M99: None of the above, but in this section 47H09: Contraction-type mappings, nonexpansive mappings, A-proper mappings, etc.

Keywords
measure of noncompactness quadratic integral equation nondecreasing solutions fixed point theorem

Citation

Zhu, Tao; Song, Chao; Li, Gang. NONDECREASING SOLUTIONS OF A QUADRATIC INTEGRAL EQUATION OF VOLTERRA TYPE. Taiwanese J. Math. 17 (2013), no. 5, 1715--1725. doi:10.11650/tjm.17.2013.2922. https://projecteuclid.org/euclid.twjm/1499706234


Export citation

References

  • B. Cahlon and M. Eskin, Existence theorems for an integral equation of the Chandrasekhar H-equation with perturbation, J. Math. Anal. Appl., 83 (1981), 159-171.
  • I. K. Argyros, On a class of quadratic integral equations with perturbations, Funct. Approx., 20 (1992), 51-63.
  • J. Banaś, M. Lecko and W. El-Sayed, Existence theorems for some quadratic integral equations, J. Math. Anal. Appl., 222 (1998), 276-285.
  • J. Banaś and B. Rzepka, On existence and asymptotic stability of solutions of a nonlinear integral equation, J. Math. Anal. Appl., 284 (2003), 165-173.
  • J. Banaś and K. Sadarangani, Solvability of Volterra-Stieltjes operator integral equations and their applications, Comput. Math. Appl., 41 (2001), 1535-1544.
  • W. G. El-Sayed and B. Rzepka, Nondecreasing solutions of a quadratic integral equation of Urysohn type, Comput. Math. Appl., 51 (2006), 1065-1074.
  • J. Caballero, J. Rocha and K. Sadarangani, On monotonic solutions of an integral equation of Volterra type, J. Comput. Appl. Math., 174 (2005), 119-133.
  • J. Caballero, B. López and K. Sadarangani, On monotonic solutions of an integral equation of Volterra type with supermum, J. Math. Anal. Appl., 305 (2005), 304-315.
  • B. C. Dhage, Multivalued operators and fixed point theorems in Banach space (2), Comput. Math. Appl., 48 (2004), 1461-1476.
  • B. C. Dhage, Multivalued operators and fixed point theorems in Banach space (1), Taiwanese. J. Math., 10(4) (2006), 1025-1045.
  • B. C. Dhage, On a fixed point theorem in Banach algebras with applications, Appl. Math. Letters, 18 (2005), 273-280.
  • J. Banaś and K. Goebel, Measures of noncompactness in Banach Space, Lecture Notes in Pure and Applied Math, Vol. 60, Marcel Dekker, New York, 1980.
  • R. P. Akhmerow, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina and B. N. Sadovskii, Measures of noncompactness and condensing operators, Nauka, Novosibirsk, 1986.
  • G. Darbo, Punti uniti in transformazioni a condominio non compatto, Rend. Sem. Mat. Univ. Padova., 24 (1955), 84-92.
  • J. Banaś and L. Olszowy, Measure of noncompactness related to monotonicity, Comment. Math., 41 (2001), 13-23.