Taiwanese Journal of Mathematics


Zhi-Wei Sun

Full-text: Open access


Let $p$ be an odd prime. It is well known that $F_{p-(\frac {p}{5})} ≡0\; ({\rm mod}\ p)$, where $\{F_n\}_{n \geq 0}$ is the Fibonacci sequence and $(-)$ is the Jacobi symbol. In this paper we show that if $p \not= 5$ then we may determine $F_{p-(p/5)}$  mod $p^3$ in the following way: $$\sum_{k=0}^{(p-1)/2} \frac{\binom{2k}{k}}{(-16)^k} ≡ \left( \frac{p}{5} \right) \left( 1+\frac{F_{p-(\frac{p}{5})}}{2} \right) \pmod{p^3}.$$ We also use Lucas quotients to determine $\sum_{k=0}^{(p-1)/2} \binom{2k}{k}/m^k$ modulo $p^2$ for any integer $m \not≡ 0 \ (\mod\ p)$; in particular, we obtain $$\sum_{k=0}^{(p-1)/2} \frac{\binom{2k}{k}}{16^k} ≡ \left( \frac{3}{p} \right) \pmod{p^2}.$$ In addition, we pose three conjectures for further research.

Article information

Taiwanese J. Math., Volume 17, Number 5 (2013), 1523-1543.

First available in Project Euclid: 10 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11B39: Fibonacci and Lucas numbers and polynomials and generalizations 11B65: Binomial coefficients; factorials; $q$-identities [See also 05A10, 05A30]
Secondary: 05A10: Factorials, binomial coefficients, combinatorial functions [See also 11B65, 33Cxx] 11A07: Congruences; primitive roots; residue systems

Fibonacci numbers central binomial coefficients congruences Lucas sequences


Sun, Zhi-Wei. FIBONACCI NUMBERS MODULO CUBES OF PRIMES. Taiwanese J. Math. 17 (2013), no. 5, 1523--1543. doi:10.11650/tjm.17.2013.2488. https://projecteuclid.org/euclid.twjm/1499706223

Export citation


  • \item[1.] A. Adamchuk, Comments on OEIS A066796 in 2007, On-Line Encyclopedia of Integer Sequences, http://oeis.org/A066796.
  • \item[2.] R. Crandall, K. Dilcher and C. Pomerance, A search for Wieferich and Wilson primes, Math. Comp., 66 (1997), 433-449.
  • \item[3.] R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Second Edition, Springer, New York, 2005.
  • \item[4.] H. W. Gould, Combinatorial Identities, Morgantown Printing and Binding Co., 1972.
  • \item[5.] A. Granville, The square of the Fermat quotient, Integers, 4 (2004), #A22, 3 pp. (electronic).
  • \item[6.] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, New York, 1994.
  • \item[7.] V. J. W. Guo and J. Zeng, Some congruences involving central $q$-binomial coefficients, Adv. in Appl. Math., 45 (2010), 303-316.
  • \item[8.] S. Mattarei and R. Tauraso, Congruences for central binomial sums and finite polylogarithms, J. Number Theory, 133 (2013), 131-157.
  • \item[9.] F. Morley, Note on the congruence $2^{4n}\equiv(-1)^n(2n)!/(n!)^2$, where $2n+1$ is a prime, Ann. Math., 9 (1895), 168-170.
  • \item[10.] H. Pan and Z. W. Sun, Proof of three conjectures on congruences, preprint, arXiv:1010.2489. http://arxiv.org/abs/1010.2489.
  • \item[11.] R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge Univ. Press, Cambridge, 1999.
  • \item[12.] N. Strauss, J. Shallit and D. Zagier, Some strange $3$-adic identities, Amer. Math. Monthly, 99 (1992), 66-69.
  • \item[13.] Z. H. Sun, Congruences involving Bernoulli and Euler numbers, J. Number Theory, 128 (2008), 280-312.
  • \item[14.] Z. H. Sun, Congruences concerning Legendre polynomials, Proc. Amer. Math. Soc., 139 (2011), 1915-1929.
  • \item[15.] Z. H. Sun and Z. W. Sun, Fibonacci numbers and Fermat's last theorem, Acta Arith., 60 (1992), 371-388.
  • \item[16.] Z. W. Sun, Binomial coefficients and quadratic fields, Proc. Amer. Math. Soc., 134 (2006), 2213-2222.
  • \item[17.] Z. W. Sun, Binomial coefficients, Catalan numbers and Lucas quotients, Sci. China Math., 53 (2010), 2473-2488. http://arxiv.org/abs/0909.5648.
  • \item[18.] Z. W. Sun, $p$-adic valuations of some sums of multinomial coefficients, Acta Arith., 148 (2011), 63-76.
  • \item[19.] Z. W. Sun, On congruences related to central binomial coefficients, J. Number Theory, 131 (2011), 2219-2238.
  • \item[20.] Z. W. Sun, On harmonic numbers and Lucas sequences, Publ. Math. Debrecen, 80 (2012), 25-41.
  • \item[21.] Z. W. Sun and R. Tauraso, New congruences for central binomial coefficients, Adv. in Appl. Math., 45 (2010), 125-148.
  • \item[22.] H. C. Williams, A note on the Fibonacci quotient $F_{p-\ve}/p$, Canad. Math. Bull., 25 (1982), 366-370.
  • \item[23.] J. Wolstenholme, On certain properties of prime numbers, Quart. J. Appl. Math., 5 (1862), 35-39.
  • \item[24.] J. Zhao, Wolstenholme type theorem for multiple harmonic sums, Int. J. Number Theory, 4 (2008), 73-106.