Taiwanese Journal of Mathematics

MULTIPLICITY OF SOLUTIONS FOR PERIODIC AND NEUMANN PROBLEMS INVOLVING THE DISCRETE $p(\cdot)$-LAPLACIAN

Călin Şerban

Full-text: Open access

Abstract

Using critical point theory, we study the multiplicity of solutions for some periodic and Neumann boundary value problems involving the discrete $p(\cdot)$-Laplacian.

Article information

Source
Taiwanese J. Math., Volume 17, Number 4 (2013), 1425-1439.

Dates
First available in Project Euclid: 10 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1499706125

Digital Object Identifier
doi:10.11650/tjm.17.2013.2399

Mathematical Reviews number (MathSciNet)
MR3085519

Zentralblatt MATH identifier
1274.39016

Subjects
Primary: 39A12: Discrete version of topics in analysis 39A23: Periodic solutions 39A70: Difference operators [See also 47B39] 65Q10: Difference equations

Keywords
discrete $p(\cdot)$-Laplacian operator variational methods critical point Palais-Smale condition Mountain Pass Theorem

Citation

Şerban, Călin. MULTIPLICITY OF SOLUTIONS FOR PERIODIC AND NEUMANN PROBLEMS INVOLVING THE DISCRETE $p(\cdot)$-LAPLACIAN. Taiwanese J. Math. 17 (2013), no. 4, 1425--1439. doi:10.11650/tjm.17.2013.2399. https://projecteuclid.org/euclid.twjm/1499706125


Export citation

References

  • R. P. Agarwal, K. Perera and D. O'Regan, Multiple positive solutions of singular and nonsingular discrete problems via variational methods, Nonlinear Anal., 58 (2004), 69-73.
  • R. P. Agarwal, K. Perera and D. O'Regan, Multiple positive solutions of singular discrete $p$-Laplacian problems via variational methods, Adv. Difference Equ., 2005:2 (2005), 93-99.
  • C. Bereanu, P. Jebelean and J. Mawhin, Multiple solutions for Neumann and periodic problems with singular $\phi$-Laplacian, J. Funct. Anal., 261 (2011), 3226-3246.
  • C. Bereanu, P. Jebelean and C. Şerban, Periodic and Neumann problems for discrete $p(\cdot)$-Laplacian, J. Math. Anal. Appl., 399 (2013), 75-87.
  • C. Bereanu, P. Jebelean and C. Şerban, Ground state and mountain pass solutions for discrete $p(\cdot)$-Laplacian, Bound. Value Probl., 104:2012 (2012).
  • L. H. Bian, H. R. Sun and Q. G. Zhang, Solutions for discrete p-Laplacian periodic boundary value problems via critical point theory, J. Difference Equ. Appl., 18 (2012), 345-355.
  • G. Bonanno and P. Candito, Nonlinear difference equations investigated via critical point methods, Nonlinear Anal., 70 (2009), 3180-3186.
  • A. Cabada, A. Iannizzotto and S. Tersian, Multiple solutions for discrete boundary value problems, J. Math. Anal. Appl., 356 (2009), 418-428.
  • P. Candito and G. D'Agui, Three solutions for a discrete nonlinear Neumann problem involving $p$-Laplacian, Adv. Difference Equ., 2010:862016 (2010).
  • P. Candito and N. Giovannelli, Multiple solutions for a discrete boundary value problem involving the $p$-Laplacian, Comput. Math. Appl., 56 (2008), 959-964.
  • M. Galewski and S. G\ptmrs łąb, On the discrete boundary value problem for anisotropic equation, J. Math. Anal. Appl., 386 (2012), 956-965.
  • M. Galewski, S. G\ptmrs łąb and R. Wieteska, Positive solutions for anisotropic discrete boundary value problems, Electron. J. Diff. Eqns., 2012(32) (2012), 1-9.
  • A. Guiro, I. Nyanquini and S. Ouaro, On the solvability of discrete nonlinear Neumann problems involving the $p(x)$-Laplacian, Adv. Difference Equ., 2011:32 (2011).
  • P. Jebelean and C. Şerban, Ground state periodic solutions for difference equations with discrete $p$-Laplacian, Appl. Math. Comput., 217 (2011), 9820-9827.
  • L. Jiang and Z. Zhou, Three solutions to Dirichlet boundary value problems for $p$-Laplacian difference equations, Adv. Difference Equ., 2008:345916 (2008).
  • B. Koné and S. Ouaro, Weak solutions for anisotropic discrete boundary value problems, J. Difference Equ. Appl., 16(2) (2010), 1-11.
  • R. Mashiyev, Z. Yucedag and S. Ogras, Existence and multiplicity of solutions for a Dirichlet problem involving the discrete $p(x)$-Laplacian operator, E. J. Qualitative Theory of Diff. Equ., 67 (2011), 1-10.
  • J. Mawhin, Periodic solutions of second order nonlinear difference systems with $\phi$-Laplacian: A variational approach, Nonlinear Anal., 75(12) (2012), 4672-4687.
  • J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York/Berlin/Heidelberg, 1989.
  • M. Mih\ptmrs ăilescu, V. R\ptmrs ădulescu and S. Tersian, Eigenvalue problems for anisotropic discrete boundary value problems, J. Difference Equ. Appl., 15(6) (2009), 557-567.
  • M. Mih\ptmrs ăilescu, V. R\ptmrs ădulescu and S. Tersian, Homoclinic solutions of difference equations with variable exponents, Topol. Methods Nonlinear Anal., 38 (2011), 277-289.
  • P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conferences in Mathematics, Vol. 65, American Mathematical Society, Providence/Rhode Island, 1986.
  • C. Şerban, Existence of solutions for discrete $p$-Laplacian with potential boundary conditions, J. Difference Equ. Appl., 19(3) (2013), 527-537,
  • A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3(2) (1986), 77-109.
  • Y. Tian and W. Ge, Existence of multiple positive solutions for discrete problems with $p$-Laplacian via variational methods, Electron. J. Diff. Eqns., 45 (2011), 1-8.
  • Y. Tian, Z. Du and W. Ge, Existence results for discrete Sturm-Liouville problem via variational methods, J. Difference Equ. Appl., 13(6) (2007), 467-478.