Taiwanese Journal of Mathematics

BLOW-UP FOR A SEMILINEAR PARABOLIC EQUATION WITH NONLINEAR MEMORY AND NONLOCAL NONLINEAR BOUNDARY

Dengming Liu, Chunlai Mu, and Iftikhar Ahmed

Full-text: Open access

Abstract

In this paper, we study a semilinear parabolic equation $$u_t = \Delta u + \int_0^t u^p ds - ku^q, \quad x \in \Omega ,\quad t\gt 0$$ with boundary condition $u(x,t) = \int_\Omega f(x,y) u^l(y,t) dy$ for $x \in \partial\Omega$, $t \gt 0$, where $p$, $q$, $l$, $k\gt 0$. The blow-up criteria and the blow-up rate are obtained under some appropriate assumptions.

Article information

Source
Taiwanese J. Math., Volume 17, Number 4 (2013), 1353-1370.

Dates
First available in Project Euclid: 10 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1499706121

Digital Object Identifier
doi:10.11650/tjm.17.2013.2648

Mathematical Reviews number (MathSciNet)
MR3085515

Zentralblatt MATH identifier
1276.35041

Subjects
Primary: 35B35: Stability 35K50 35K55: Nonlinear parabolic equations

Keywords
semilinear parabolic equation global existence blow-up nonlinear memory nonlocal nonlinear boundary condition

Citation

Liu, Dengming; Mu, Chunlai; Ahmed, Iftikhar. BLOW-UP FOR A SEMILINEAR PARABOLIC EQUATION WITH NONLINEAR MEMORY AND NONLOCAL NONLINEAR BOUNDARY. Taiwanese J. Math. 17 (2013), no. 4, 1353--1370. doi:10.11650/tjm.17.2013.2648. https://projecteuclid.org/euclid.twjm/1499706121


Export citation

References

  • H. Bellout, Blow-up of solutions of parabolic equation with nonlinear memory, J. Differential Equations, 70 (1987), 42-68.
  • W. A. Day, A decreasing property of solutions of parabolic equations with applications to thermoelasticity, Quart. Appl. Math., 40 (1983), 468-475.
  • W. A. Day, Heat Conduction within Linear Thermoelasticity, Springer-Verlag, New York, USA, 1985.
  • K. Deng, Comparison principle for some nonlocal problems, Quart. Appl. Math., 50 (1992), 517-522.
  • L. L. Du and C. L. Mu, Global existence and blow-up analysis to a degenerate reaction diffusion system with nonlinear memory, Nonlinear Anal. Real World Appl., 9 (2008), 303-315.
  • A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hill, Englewood Cliffs, NJ, 1983.
  • A. Friedman, Monotonic decay of solutions of parabolic equations with nonlocal boundary conditions, Quart. Appl. Math., 44 (1986), 401-407.
  • A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-447.
  • A. Gladkov and M. Guedda, Semilinear heat equation with absorption and a nonlocal boundary condition, Appl. Anal., 91 (2012), 2267-2276.
  • A. Gladkov and K. I. Kim, Blow-up of solutions for semilinear heat equation with nonlinear nonlocal boundary condition, J. Math. Anal. Appl., 338 (2008), 264-273.
  • A. Gladkov and K. I. Kim, Uniqueness and nonuniqueness for reaction-diffusion equation with nonlocal boundary, Adv. Math. Sci. Appl., 19 (2009), 39-49.
  • Y.-J. L. Guo and M. Shimojo, Blow-up for parabolic equations and systems with nonnegative potential, Taiwanese J. Math., 15 (2011), 995-1005.
  • D. Hirata, Blow-up for a class of semilinear integro-differential equations of parabolic type, Math. Methods Appl. Sci., 22 (1999), 1087-1100.
  • M. Jazar and R. Kiwan, Blow-up of a nonlocal semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincaré-Anal. Non Lineaire, 25 (2008), 215-218.
  • Y. X. Li and C. H. Xie, Blow-up for semilinear parabolic equations with nonlinear memory, Z. Angew. Math. Phys., 55 (2004), 15-27.
  • J. Liang, H. Y. Wang and T. J. Xiao, On a comparison principle for delay coupled systems with nonlocal and nonlinear boundary conditions, Nonlinear Anal., 71 (2009), e359-e365.
  • Z. G. Lin and Y. R. Liu, Uniform blow-up profiles for diffusion equations with nonlocal source and nonlocal boundary, Acta Math. Sci. Ser. B, 24 (2004), 443-450.
  • C. L. Mu, D. M. Liu and S. M. Zhou, Properties of positive solutions for a nonlocal reaction diffusion equation with nonlocal nonlinear boundary condition, J. Korean Math. Soc., 47 (2010), 1317-1328.
  • C. V. Pao, Asymptotic behavior of solutions of reaction diffusion equations with nonlocal boundary conditions, J. Comput. Appl. Math., 88 (1998), 225-238.
  • A. E. Soufi, M. Jazar and R. Monneau, A Gamma-convergence argument for the blow-up of a nonlocal semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincaré-Anal. Non Lineaire, 24 (2007), 17-39.
  • P. Souplet, Blow-up in nonlocal reaction diffusion equations, SIAM J. Math. Anal., 29 (1998), 1301-1334.
  • P. Souplet, Monotonicity of solutions and blow-up for semilinear parabolic equations with nonlinear memory, Z. Angew. Math. Phys., 55 (2004), 28-31.
  • M. X. Wang and Y. M. Wang, Properties of positive solutions for nonlocal reaction diffusion problems, Math. Methods Appl. Sci., 19 (1996), 1141-1156.
  • Y. L. Wang, C. L. Mu and Z. Y. Xiang, Blow up of solutions to a porous medium equation with nonlocal boundary condition, Appl. Math. Comput., 192 (2007), 579-585.
  • Y. L. Wang, C. L. Mu and Z. Y. Xiang, Properties of positive solution for nonlocal reaction diffusion with nonlocal boundary, Bound. Value Prob., 2007 (2007), Article ID 64579, 12 pages.
  • Y. Yamada, On a certain class of semilinear Volterra diffusion equations, J. Math. Anal. Appl., 88 (1982), 443-457.
  • Y. Yamada, Asymptotic stablity for some system of semilinear Voterra diffusion equations, J. Differential Equations, 52 (1984), 295-326.
  • H. M. Yin, On a class of parabolic equations with nonlocal boundary conditions, J. Math. Anal. Appl., 294 (2004), 712-728.
  • J. Zhou, C. L. Mu and M. S. Fan, Global existence and blow-up to a degenerate reaction diffusion system with nonlinear memory, Nonlinear Anal. Real World Appl., 9 (2008), 1578-1534.
  • J. Zhou, C. L. Mu and F. Lu, Blow-up and global existence to a degenerate reaction diffusion equation with nonlinear memory, J. Math. Anal. Appl., 333 (2007), 1138-1152.