Taiwanese Journal of Mathematics


Chung-Cheng Kuo

Full-text: Open access


Let $\alpha$ be a nonnegative number, and $\text{C}: \text{X} \to \text{X}$ a bounded linear operator on a Banach space $\text{X}$. In this paper, we shall deduce some basic properties of a nondegenerate local $\alpha$-times integrated $\text{C}$-cosine function on $\text{X}$ and some generation theorems of local $\alpha$-times integrated $\text{C}$-cosine functions on $\text{X}$ with or without the nondegeneracy, which can be applied to obtain some equivalence relations between the generation of a nondegenerate local $\alpha$-times integrated $\text{C}$-cosine function on $\text{X}$ with generator $\text{A}$ and the unique existence of solutions of the abstract Cauchy problem: $$\textrm{ACP}(A,f,x,y) \qquad \begin{cases} u''(t) = Au(t) + f(t) \quad \textrm{for } t \in (0,T_0), \\ u(0) = x, u'(0) = y, \end{cases}$$ just as the case of $\alpha$-times integrated $\text{C}$-cosine function when $\text{C} :\text{X}\to\text{X}$ is injective and $\text{A}:\text{D}(\text{A})\subset\text{X}\to\text{X}$ a closed linear operator in $\text{X}$ such that $\text{C}\text{A}\subset \text{A}\text{C}$. Here $0 \lt T_0 \leq \infty$, $x,y \in X$, and $f$ is an $X$-valued function defined on a subset of $\mathbb{R}$ containing $(0,T_0)$.

Article information

Taiwanese J. Math., Volume 17, Number 3 (2013), 957-980.

First available in Project Euclid: 10 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 47D60: $C$-semigroups, regularized semigroups 47D62: Integrated semigroups

local integrated C-cosine function generator abstract Cauchy problem


Kuo, Chung-Cheng. NOTE ON LOCAL INTEGRATED $\text{C}$-COSINE FUNCTIONS AND ABSTRACT CAUCHY PROBLEMS. Taiwanese J. Math. 17 (2013), no. 3, 957--980. doi:10.11650/tjm.17.2013.2234. https://projecteuclid.org/euclid.twjm/1499705993

Export citation


  • \item[1.] W. Arendt, C. J. K. Batty, H. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Vol. 96, Birkhauser Verlag, Basel-Boston-Berlin, 2001.
  • \item[2.] W. Arendt and H. Kellermann, Integrated Solutions of Volterra Integrodifferential Equations and Applications, Pitman Res. Notes Math., Vol. 190, Longman, Harlow, 1989, pp. 21-51.
  • \item[3.] H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, in North-Holland Math. Stud., Vol. 108, North-Holland, Amsterdam, 1985.
  • \item[4.] M. C. Gao, Local C-Semigroups and C-Cosine Functions, Acta Math. Sci., 19 (1999), 201-213.
  • \item[5.] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford, 1985.
  • \item[6.] F. Huang and T. Huang, Local C-Cosine Family Theory and Application, Chin. Ann. Math., 16 (1995), 213-232.
  • \item[7.] Z. Huang and S. Wang, Strongly Continuous Integrated C-Cosine Operator Function and the Application to the Second Order Abstract Cauchy Problem, in: Functional Analysis in China, Kluwer Academic Publishes, Holland, 1996, pp. 330-350.
  • \item[8.] S. Kanda, Cosine Families and Weak Solution of Second Order Differential Equations, Proc. Japan Acad. Ser. A. Math. Sci., 54 (1978), 119-123.
  • \item[9.] C.-C. Kuo and S.-Y. Shaw, C-Cosine Functions and the Abstract Cauchy Problem I, II, J. Math. Anal. Appl., 210 (1997), 632-646, 647-666.
  • \item[10.] C.-C. Kuo, On exponentially bounded $\alpha$-Times Integrated C-Cosine Functions, Yokohama Math. J., 52 (2005), 59-72.
  • \item[11.] C.-C. Kuo, On $\alpha$-Times Integrated C-Cosine Functions and Abstract Cauchy Problem I, J. Math. Anal. Appl., 313 (2006), 142-162.
  • \item[12.] C.-C. Kuo, On Existence and Approximation of Solutions of Second Order Abstract Cauchy Problem, Taiwanese J. Math., 14(3B) (2010), 1093-1109.
  • \item[13.] C.-C. Kuo, On Local Integrated $\tC$-Cosine Function and Weak Solution of Second Order Abstract Cauchy Problem, Taiwanese J. Math., 14(5) (2010), 2027-2042.
  • \item[14.] C.-C. Kuo, On Perturbation of local integrated cosine functions, Taiwanese J. Math., 16(5) (2012), 1613-1628.
  • \item[15.] Y.-C. Li and S.-Y. Shaw, On Generators of Integrated C-Semigroups and C-Cosine Functions, Semigroup Forum, 47 (1993), 29-35.
  • \item[16.] Y.-C. Li and S.-Y. Shaw, On Local $\alpha$-Times Integrated C-Semigroups, Abstract and Applied Anal., 2007, Article ID34890, 18 pages.
  • \item[17.] S.-Y. Shaw and Y.-C. Li, On $N$-Times Integrated C-Cosine Functions, in: Evolution Equation, Dekker, New York, 1994, pp. 393-406.
  • \item[18.] S.-Y. Shaw and Y.-C. Li, Characterization and generator of local C-osine and C-sine Functions, Inter. J. Evolution Equations, 1(4) (2005), 373-401.
  • \item[19.] Sova, Cosine Operator Functions, Rozprawy Mat., 49 (1966), 1-47.
  • \item[20.] T. Takenaka and S. Piskarev, Local C-Cosine Families and $N$-Times Integrated Local Cosine Families, Taiwanese J. Math., 8 (2004), 515-546.
  • \item[21.] N. Takenaka and I. Miyadera, C-semigroups and the Abstract Cauchy Problem, J. Math. Anal. Appl., 170 (1992), 196-206.
  • \item[22.] H.-Y. Wang, C-Cosine Operator Functions and the Second Order Abstract Cauchy Problem, Northeast Math. J., 11(1) (1995), 1-10.
  • \item[23.] S.-W. Wang and Z. Huang, Strongly Continuous Integrated C-Cosine Operator Functions, Studia Math., 126 (1997), 273-289.
  • \item[24.] T.-J. Xiao and J. Liang, The Cauchy Problem for Higher-Order Abstract Differential Equations, Lectures Notes in Math., 1701, Springer, 1998.
  • \item[25.] R. Zhao and Z. Huang, Properties of Subgenerators of Integrated C-Cosine Operator Functions, Northeast Math. J., 14(3) (1998), 281-290.
  • \item[26.] Q. Zheng, Coercive Differential Operators and Fractionally Integrated Cosine Functions, Taiwanese J. Math., 6 (2002), 59-65.