Taiwanese Journal of Mathematics


Abdelmoumene Djabi and Abdelbaki Merouani

Full-text: Open access


We consider a mathematical problem for quasistatic contact between anelectro elastic-viscoplastic body and an obstacle. The contact is frictional and bilateral with a moving rigid foundation which results in the wear of the contacting surface. We employ the electro elastic-viscoplastic with damage constitutive law for the material. The evolution of the damage is described by an inclusion of parabolic type. The problem is formulated as a system of an elliptic variational inequality for the displacement, a parabolic variational inequality for the damage and a variational equality for the electric stress. We establish a variational formulation for the model and we give the wear conditions for the existence of a unique weak solution to the problem. The proofs are based on classical results for elliptic variational inequalities, parabolic inequalities and fixed point arguments.

Article information

Taiwanese J. Math., Volume 19, Number 4 (2015), 1161-1182.

First available in Project Euclid: 4 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 70F40: Problems with friction 74M10: Friction 74M15: Contact 49J40: Variational methods including variational inequalities [See also 47J20] 74M10: Friction 74M15: Contact

piezoelectric elastic-viscoplastic Fixed point friction contact variational inequality wear


Djabi, Abdelmoumene; Merouani, Abdelbaki. BILATERAL CONTACT PROBLEM WITH FRICTION AND WEAR FOR AN ELECTRO ELASTIC-VISCOPLASTIC MATERIALS WITH DAMAGE. Taiwanese J. Math. 19 (2015), no. 4, 1161--1182. doi:10.11650/tjm.19.2015.5453. https://projecteuclid.org/euclid.twjm/1499133694

Export citation


  • A. Aissaoui and N. Hemici, A frictional contact problem with damage and adhesion for an electro elastic-viscoplastic body, Electron J. Differential Equations, 2014(11) (2014), 1-19.
  • A. Aissaoui and N. Hemici, Bilateral contact problem with adhesion and damage, Electron J. Qual. Theory Differ. Equ., 18 (2014), 1-16.
  • V. Barbu, Optimal Control of Variational Inequalities, Pitman, Boston, 1984.
  • R. C. Batra and J. S. Yang, Saint Venant's principle in linear piezoelectricity, J. Elasticity, 38 (1995), 209-218.
  • P. Bisenga, F. Lebon and F. Maceri, The unilateral frictional contact of a piezoelectric body with a rigid support, in Contact Mechanics, J. A. C. Martins and Manuel D. P. Monteiro Marques (Eds), Kluwer, Dordrecht, 2002, pp. 347-354.
  • H. Brézis, Equations et inéquations non liné aires dans les espaces vectoriels en dualité, Ann. Inst. Fourier, 18 (1968), 115-175, (in French).
  • G. Duvaut and J.-L. Lions, Les inéquations en mé canique et en physique, Springer, Berlin, 1976, (in French).
  • C. Eck, J. Jaru\ptmrs šek and M. Krbe\ptmrsč, Unilateral Contact Problems: Variational Methods and Existence Theorems, Pure and Applied Mathematics 270, Chapman/CRC Press, New York, 2005.
  • T. Ikeda, Fundamentals of Piezoelectricity, Oxford University Press, Oxford, 1990.
  • Z. Lerguet, Z. Zellagui, H. Benseridi and S. Drabla, Variational analysis of an electro viscoelastic contact problem with friction, Journal of the Association of Arab Universities for Basic and Applied Sciences, 14(Issue 1) (2013), 93-100.
  • F. Maceri and P. Bisegna, The unilateral frictionless contact of a piezoelectric body with a rigid support, Math. Comp. Modelling, 28 (1998), 19-28.
  • A. Merouani and F. Messelmi, Dynamic evolution of damage in elastic-thermo-viscoplastic materials, Electron J. Differential Equations, 129 (2010), 1-15.
  • R. D. Mindlin, Polarisation gradient in elastic dielectrics, Int. J. Solids Structures, 4 (1968), 637-663.
  • R. D. Mindlin, Elasticity piezoelasticity and crystal lattice dynamics, J. Elasticity, 4 (1972), 217-280.
  • J. Ne\ptmrs čas and I. Hlavá\ptmrs ček, Mathematical Theory of Elastic and Elasto-plastic Bodies, An Introduction, Elsevier, Amsterdam, 1981.
  • N. Strömberg, L. Johansson and A. Klarbring, Derivation and analysis of a generalized standard model for contact friction and wear, Int. J. Solids Structures, 33 (1996), 1817-1836.