Taiwanese Journal of Mathematics

A Note on Iitaka's Conjecture $C_{3,1}$ in Positive Characteristics

Lei Zhang

Full-text: Open access


Let $f \colon X \to Y$ be a fibration from a smooth projective $3$-fold to a smooth projective curve, over an algebraically closed field $k$ of characteristic $p \gt 5$. We prove that if the generic fiber $X_{\eta}$ has big canonical divisor $K_{X_{\eta}}$, then\[  \kappa(X)  \geq \kappa(Y) + \kappa(X_{\eta}).\]

Article information

Taiwanese J. Math., Volume 21, Number 3 (2017), 689-704.

First available in Project Euclid: 1 July 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14E05: Rational and birational maps 14E30: Minimal model program (Mori theory, extremal rays)

Kodaira dimension positive characteristics weak positivity minimal model


Zhang, Lei. A Note on Iitaka's Conjecture $C_{3,1}$ in Positive Characteristics. Taiwanese J. Math. 21 (2017), no. 3, 689--704. doi:10.11650/tjm/7931. https://projecteuclid.org/euclid.twjm/1498874614

Export citation


  • M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414–452.
  • L. Bădescu, Algebraic Surfaces, Universitext, Springer-Verlag, New York, 2001.
  • C. Birkar, The Iitaka conjecture $C_{n,m}$ in dimension six, Compos. Math. 145 (2009), no. 6, 1442–1446.
  • ––––, Existence of flips and minimal models for $3$-folds in char $p$, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 1, 169–212.
  • C. Birkar, Y. Chen and L. Zhang, Iitaka $C_{n,m}$ conjecture for $3$-folds over finite fields, to appear in Nagoya Mathematical Journal.
  • C. Birkar and J. Waldron, Existence of Mori fibre spaces for $3$-folds in char $p$. arXiv:1410.4511v1
  • P. Cascini, C. Hacon, M. Mustaţă and K. Schwede, On the numerical dimension of pseudo-effective divisors in positive characteristic, Amer. J. Math. 136 (2014), no. 6, 1609–1628.
  • P. Cascini, H. Tanaka and C. Xu, On base point freeness in positive characteristic, Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 5, 1239–1272.
  • J. A. Chen and C. D. Hacon, Kodaira dimension of irregular varieties, Invent. Math. 186 (2011), no. 3, 481–500.
  • Y. Chen and L. Zhang, The subadditivity of the Kodaira dimension for fibrations of relative dimension one in positive characteristics, Math. Res. Lett. 22 (2015), no. 3, 675–696.
  • V. Cossart and O. Piltant, Resolution of singularities of threefolds in positive characteristic I: Reduction to local uniformization on Artin-Schreier and purely inseparable coverings, J. Algebra 320 (2008), no. 3, 1051–1082.
  • ––––, Resolution of singularities of threefolds in positive characteristic II, J. Algebra 321 (2009), no. 7, 1836–1976.
  • S. D. Cutkosky, Resolution of singularities for $3$-folds in positive characteristic, Amer. J. Math. 131 (2009), no. 1, 59–127.
  • O. Debarre, Higher-dimensional Algebraic Geometry, Universitext, Springer-Verlag, New York, 2001.
  • S. Ejiri, Weak positivity theorem and Frobenius stable canonical rings of geometric generic fibers. arXiv:1508.00484
  • S. Ejiri and L. Zhang Iitaka's $C_{n,m}$ conjecture for $3$-folds in positive characteristic. arXiv:1604.01856
  • O. Fujino, On subadditivity of the logarithmic Kodaira dimension. arXiv:1406.2759
  • C. D. Hacon and C. Xu, On the three dimensional minimal model program in positive characteristic, J. Amer. Math. Soc. 28 (2015), no. 3, 711–744.
  • R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag, New York, 1977.
  • S. Iitaka, Algebraic Geometry: An introduction to birational geometry of algebraic varieties, Graduate Texts in Mathematics 76, Springer-Verlag, New York, 1982.
  • A. J. de Jong, Families of curves and alterations, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 2, 599–621.
  • Y. Kawamata, Characterization of abelian varieties, Compositio Math. 43 (1981), no. 2, 253–276.
  • ––––, Kodaira dimension of algebraic fiber spaces over curves, Invent. Math. 66 (1982), no. 1, 57–71.
  • ––––, Minimal models and the Kodaira dimension of algebraic fiber spaces, J. Reine Angew. Math. 363 (1985), 1–46.
  • J. Kollár, Subadditivity of the Kodaira dimension: fibers of general type, in Algebraic Geometry, Sendai, 1985, 361–398, Adv. Stud. Pure Math. 10, North-Holland, Amsterdam, 1987.
  • H. Lange and U. Stuhler, Vektorbündel auf Kurven und Darstellungen der algebraischen Fundamentalgruppe, Math Z. 156 (1977), no. 1, 73–83.
  • N. Nakayama, Zariski-decomposition and Abundance, MSJ Memoirs 14, Mathematical Society of Japan, Tokyo, 2004.
  • T. Oda, Vector bundles on an elliptic curve, Nagoya Math. J. 43 (1971), 41–72.
  • Z. Patakfalvi, Semi-positivity in positive characteristics, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 5, 991–1025.
  • ––––, On subadditivity of Kodaira dimension in positive characteristic, to appear in Journal of Algebraic Geometry. arXiv:1308.5371
  • Z. Patakfalvi, K. Schwede and W. Zhang $F$-singularities in families. arXiv:1305.1646
  • H. Tanaka, Abundance theorem for surfaces over imperfect fields. arXiv:1502.01383
  • E. Viehweg, Canonical divisors and the additivity of the Kodaira dimension for morphisms of relative dimension one, Compositio Math. 35 (1977), no. 2, 197–223.
  • ––––, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, in Algebraic Varieties and Analytic Varieties (Tokyo, 1981), 329–353, Adv. Stud. Pure Math. 1, North-Holland, Amsterdam, 1983.
  • C. Xu, On the base-point-free theorem of $3$-folds in positive characteristic, J. Inst. Math. Jussieu 14 (2015), no. 3, 577–588.
  • L. Zhang, Subadditivity of Kodaira dimensions for fibrations of three-folds in positive characteristics. arXiv:1601.06907