Taiwanese Journal of Mathematics

Analysis of a Frictionless Contact Problem with Adhesion for Piezoelectric Materials

Soumia Latreche and Lynda Selmani

Full-text: Open access

Abstract

This paper is devoted to the study of the mathematical model involving a frictionless contact between an electro-elasto-viscoplastic body and a conductive adhesive foundation. The process is mechanically dynamic and electrically static. The contact is modeled with a normal compliance where the adhesion is taken into account and a regularized electrical conductivity condition. We derive a variational formulation of the problem and prove its unique weak solution. The proof is based on nonlinear evolution equations with monotone operators, differential equations and fixed point arguments.

Article information

Source
Taiwanese J. Math., Volume 21, Number 1 (2017), 81-105.

Dates
First available in Project Euclid: 1 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1498874558

Digital Object Identifier
doi:10.11650/tjm.21.2017.7274

Mathematical Reviews number (MathSciNet)
MR3613975

Zentralblatt MATH identifier
1357.74041

Subjects
Primary: 74M15: Contact 74D10: Nonlinear constitutive equations 74F15: Electromagnetic effects

Keywords
electro-elasto-viscoplastic materials internal state variable normal compliance adhesion weak solution evolution equations fixed point

Citation

Latreche, Soumia; Selmani, Lynda. Analysis of a Frictionless Contact Problem with Adhesion for Piezoelectric Materials. Taiwanese J. Math. 21 (2017), no. 1, 81--105. doi:10.11650/tjm.21.2017.7274. https://projecteuclid.org/euclid.twjm/1498874558


Export citation

References

  • M. Barboteu, J. R. Fernández and Y. Ouafik, Numerical analysis of two frictionless elastic-piezoelectric contact problems. J. Math. Anal. Appl. 339 (2008), no. 2, 905–917.
  • R. C. Batra and J. S. Yang, Saint-Venant's principle in linear piezoelectricity, J. Elasticity 38 (1995), no. 2, 209–218.
  • P. Bisegna, F. Lebon and F. Maceri, The unilateral frictional contact of a piezoelectric body with a rigid support, in Ccntact Mechanics, (Praia da Consolação, 2001), 347–354, Solid Mech. Appl. 103, Kluwer Acad. Publ., Dordrecht, 2002.
  • H. Brézis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble) 18 (1968), fasc. 1, 115–175.
  • O. Chau, J. R. Fernández, M. Shillor and M. Sofonea, Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion, J. Comput. Appl. Math. 159 (2003), no. 2, 431–465.
  • O. Chau, M. Shillor and M. Sofonea, Dynamic frictionless contact with adhesion, Z. Angew. Math. Phys. 55 (2004), no. 1, 32–47.
  • N. Cristescu and I. Suliciu, Viscoplasticity, Mechanics of Plastic Solids 5, Martinus Nijhoff Publishers, The Hague, 1982.
  • G. Duvaut and J.-L. Lions, Les Inéquations en Mécanique et en Physique, Springer, Berlin, 1976.
  • H. Fan, K.-Y. Sze and W. Yang, Two-dimensional contact on a piezoelectric half-space, Internat. J. Solids Structures 33 (1996), no. 9, 1305–1315.
  • W. Han, M. Sofonea and K. Kazmi, Analysis and numerical solution of a frictionless contact problem for electro-elastic-visco-plastic materials, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 37-40, 3915–3926.
  • T. Ikeda, Fundamentals of Piezoelectricity, Oxford University Press, Oxford, 1990.
  • O. Kavian, Introduction à la théorie des points critiques et applications aux problémes elliptiques, Springer-Verlag, Paris, 1993.
  • Z. Lerguet, M. Shillor and M. Sofonea, A frictional contact problem for an electro-viscoelastic body, Electron. J. Differential Equations, 2007 (2007), no. 170, 1–16.
  • Y. Ouafik, A piezoelectric body in frictional contact, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 48(96) (2005), no. 2, 233–242.
  • M. Raous, L. Cangémi and M. Cocu, A consistent model coupling adhesion, friction, and unilateral contact, Comput. Methods Appl. Mech. Engrg. 177 (1999), no. 3-4, 383–399.
  • J. Rojek and J. J. Telega, Contact problems with friction, adhesion and wear in orthopaedic biomechanics, Part I–general developments, J. Theoret. Appl. Mech. 39 (2001), no. 3, 655–677.
  • J. Rojek, J. J. Telega and S. Stupkiewicz, Contact problems with friction, adherence and wear in orthopaedic biomechanics, Part II–numerical implementation and application to implanted knee joints, J. Theoret. Appl. Mech. 39 (2001), no. 3, 679–706.
  • L. Selmani, A frictionless contact problem for elastic-viscoplastic materials with internal state variable, Appl. Math. (Warsaw) 40 (2013), no. 1, 1–20.
  • M. Selmani and L. Selmani, Analysis of a frictionless contact problem for elastic-viscoplastic materials, Nonlinear Anal. Model. Control 17 (2012), no. 1, 99–117.
  • M. Sofonea and EL-H. Essoufi, A piezoelectric contact problem with slip dependent coefficient of friction, Math. Mode. Anal. 9 (2004), no. 3, 229–242.
  • ––––, Quasistatic frictional contact of a viscoelastic piezoelectric body, Adv. Math. Sci. Appl. 14 (2004), no. 2, 613–631.
  • M. Sofonea, W. Han and M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics (Boca Raton) 276, Chapman & Hall/CRC, Boca Raton, FL, 2006.