Taiwanese Journal of Mathematics

Counting Lines on Quartic Surfaces

Víctor González-Alonso and Sławomir Rams

Full-text: Open access

Abstract

We prove the sharp bound of at most $64$ lines on projective quartic surfaces $S \subset \mathbb{P}^3(\mathbb{C})$ (resp. affine quartics $S \subset \mathbb{C}^3$) that are not ruled by lines. We study configurations of lines on certain non-$K3$ surfaces of degree four and give various examples of singular quartics with many lines.

Article information

Source
Taiwanese J. Math., Volume 20, Number 4 (2016), 769-785.

Dates
First available in Project Euclid: 1 July 2017

Permanent link to this document
https://projecteuclid.org/euclid.twjm/1498874490

Digital Object Identifier
doi:10.11650/tjm.20.2016.7135

Mathematical Reviews number (MathSciNet)
MR3535673

Zentralblatt MATH identifier
1357.14052

Subjects
Primary: 14J25: Special surfaces {For Hilbert modular surfaces, see 14G35} 14N25: Varieties of low degree
Secondary: 14N20: Configurations and arrangements of linear subspaces 14J70: Hypersurfaces

Keywords
line quartic surface non-ADE singularity

Citation

González-Alonso, Víctor; Rams, Sławomir. Counting Lines on Quartic Surfaces. Taiwanese J. Math. 20 (2016), no. 4, 769--785. doi:10.11650/tjm.20.2016.7135. https://projecteuclid.org/euclid.twjm/1498874490


Export citation

References

  • S. Boissière and A. Sarti, Counting lines on surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), no. 1, 39–52.
  • A. Clebsch, Ueber die Flächen vierter Ordnung, welche eine Doppelcurve zweiten Grades besitzen, J. Reine Angew. Math. 1868 (1868), no. 69, 142–184.
  • A. I. Degtyarev, Classification of quartic surfaces that have a nonsimple singular point, Math. USSR-Izv. 35 (1990), no. 3, 607–627.
  • A. I. Degtyarev, I. Itenberg and A. Sinan Sertöz, Lines on quartic surfaces, preprint (2016), arXiv:math/1601.04238.
  • Igor V. Dolgachev, Classical algebraic geometry: A modern view, Cambridge University Press, Cambridge, 2012.
  • M. Dumnicki, B. Harbourne, T. Szemberg and H. Tutaj-Gasińska, Linear subspaces, symbolic powers and Nagata type conjectures, Adv. Math. 252 (2014), 471–491.
  • D. Eisenbud and J. Harris, $3264$ and all that: Intersection theory in algebraic geometry, Draft available at http://isites.harvard.edu/fs/docs/icb.topic720403.files/book.pdf, 2012.
  • J. Harris and Y. Tschinkel, Rational points on quartics, Duke Math. J. 104 (2000), no. 3, 477–500.
  • J.-P. Jouanolou, Théorèmes de Bertini et applications, Progress in Mathematics 42, Birkhäuser Boston, Boston, MA, 1983.
  • J. Kollár, Szemerédi-Trotter-type theorems in dimension $3$, Adv. Math. 271 (2015), 30–-61.
  • R. Miranda, The Basic Theory of Elliptic Surfaces, Dottorato di Ricerca in Mathematica, ETS Editrice, Pisa, 1989.
  • Y. Miyaoka, Counting lines and conics on a surface, Publ. Res. Inst. Math. Sci. 45 (2009), no. 3, 919–923.
  • I. Polo-Blanco, M. van der Put and J. Top, Ruled quartic surfaces, models and classification, Geom. Dedicata 150 (2011), no. 1, 151–180.
  • S. Rams and M. Schütt, $64$ lines on smooth quartic surfaces, Math. Ann. 362 (2015), no. 1-2, 679–698.
  • ––––, $112$ lines on smooth quartic surfaces (characteristic $3$), Q. J. Math. 66 (2015), no. 3, 941–951.
  • K. Rohn, Ueber die Flächen vierter Ordnung mit dreifachem Punkte, Math. Ann. 24 (1884), no. 1, 55–151.
  • G. Salmon, A treatise on the analytic geometry of three dimensions. Vol. II., Fifth edition, Longmans and Green, London, 1915.
  • F. Schur, Ueber eine besondre Classe von Flächen vierter Ordnung, Math. Ann. 20 (1882), no. 2, 254–296.
  • B. Segre, The maximum number of lines lying on a quartic surface, Quart. J. Math., Oxford Ser. 14 (1943), no. 1, 86–96.
  • D. C. Veniani, The maximum number of lines lying on a K3 quartic surface, preprint (2015), arXiv:math/1502.04510.
  • C. T. C. Wall, Sextic curves and quartic surfaces with higher singularities, preprint 1998, available at http://www.liv.ac.uk/$\sim$ctcw/Other.html.