Open Access
2018 Pointwise estimates in the Filippov lemma and Filippov-Ważewski theorem for fourth order differential inclusions
Grzegorz Bartuzel, Andrzej Fryszkowski
Topol. Methods Nonlinear Anal. 52(2): 515-540 (2018). DOI: 10.12775/TMNA.2018.014

Abstract

In this work we give a generalization of the Filippov-Ważewski Theorem to the fourth order differential inclusions in a separable complex Banach space $\mathbb{X}$ \begin{equation*} \mathcal{D}y=y^{\prime \prime \prime \prime }-( A^{2}+B^{2}) y^{\prime \prime }+A^{2}B^{2}y\in F( t,y) , \end{equation*} with the initial conditions in $c\in [ 0,T]$ \begin{equation} y( c) =\alpha ,\qquad y^{\prime }( c) =\beta ,\qquad y^{\prime \prime }( c) =\gamma ,\qquad y^{\prime \prime \prime }( c) =\delta ,\tag{*} \end{equation} We assume that the multifunction $F\colon[ 0,T] \times \mathbb{X} \leadsto c( \mathbb{X}) $ is Lipschitz continuous in $y$ with the integrable Lipschitz constant $l( .) $, while $A^{2},B^{2}\in B( \mathbb{X}) $ are the infinitesimal generators of two cosine families of operators. The main result is the following version of Filippov Lemma:

Theorem: Let $y_{0}\in W^{4,1}=W^{4,1}([ 0,T] ,\mathbb{X}) $ be such function with (*) that \begin{equation*} \mathrm{dist}( \mathcal{D}y_{0}( t) ,F( t,y_{0}( t) ) ) \leq p_{0}( t) \quad \text{a.e. in } [ c,d] \subset [ 0,T] , \end{equation*} where $p_{0}\in L^{1}[ 0,T] $. Then there are $\mathcal{\sigma }_{0}$ $($depending on $p_{0})$ and $\varphi $ such that for each $\varepsilon >0$ there exists a solution $y\in W^{4,1}$ of the above problem such that almost everywhere in $t\in [c,d]$ we have $\vert \mathcal{D}y( t) -\mathcal{D}y_{0}( t) \vert \leq \mathcal{\sigma }_{0}( t) $, \begin{alignat*}2 \vert y( t) -y_{0}( t) \vert &\leq(\varphi \ast _{c}\sigma _{0})( t) , &\qquad \vert y^{\prime }( t) -y_{0}^{\prime }( t) \vert \leq ( \varphi ^{\prime }\ast _{c}\sigma _{0}t) ( t ) , \\ \vert y^{\prime \prime }( t) -y_{0}^{\prime \prime }( t) \vert &\leq ( \varphi ^{\prime \prime }\ast _{c}\sigma _{0}) ( t) &\qquad \vert y^{\prime \prime \prime }( t) -y_{0}^{\prime \prime \prime }( t) \vert \leq( \varphi ^{\prime \prime \prime }\ast _{c}\sigma _{0})( t) , \end{alignat*} where $\ast _{c}$ stands for the convolution started at $c$.

Our estimates are constructive and more precise then those in the known versions of Filippov Lemma.

Citation

Download Citation

Grzegorz Bartuzel. Andrzej Fryszkowski. "Pointwise estimates in the Filippov lemma and Filippov-Ważewski theorem for fourth order differential inclusions." Topol. Methods Nonlinear Anal. 52 (2) 515 - 540, 2018. https://doi.org/10.12775/TMNA.2018.014

Information

Published: 2018
First available in Project Euclid: 9 August 2018

zbMATH: 07051678
MathSciNet: MR3915649
Digital Object Identifier: 10.12775/TMNA.2018.014

Rights: Copyright © 2018 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.52 • No. 2 • 2018
Back to Top