Topological Methods in Nonlinear Analysis

Fixed point theory and generalized Leray-Schauder alternatives for approximable maps in topological vector spaces

Ravi P. Agarwal, Donal O'Regan, and Radu Precup

Full-text: Open access

Abstract

Some new fixed point theorems for approximable maps are obtained in this paper. Homotopy results, via essential maps, are also presented for approximable maps.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 22, Number 1 (2003), 193-202.

Dates
First available in Project Euclid: 30 September 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1475266326

Mathematical Reviews number (MathSciNet)
MR2037275

Zentralblatt MATH identifier
1067.47068

Citation

Agarwal, Ravi P.; O'Regan, Donal; Precup, Radu. Fixed point theory and generalized Leray-Schauder alternatives for approximable maps in topological vector spaces. Topol. Methods Nonlinear Anal. 22 (2003), no. 1, 193--202. https://projecteuclid.org/euclid.tmna/1475266326


Export citation

References

  • \ref\key 1R. P. Agarwal and D. O'Regan, Homotopy and Leray–Schauder principles for multimaps , Nonlinear Anal. Forum, 7(2002 pages 103–111) \ref\key 2
  • C. D. Aliprantis and K. C. Border, Infinite dimensional analysis, Springer–Verlag Berlin (1994) \ref\key 3
  • H. Ben-El-Mechaiekh, S. Chebbi and M. Florenzano, A Leray–Schauder type theorem for approximable maps: a simple proof , Proc. Amer. Math. Soc., 126(1998 pages 2345–2349) \ref\key 4
  • H. Ben-El-Mechaiekh and P. Deguire, Approachability and fixed points for nonconvex set valued maps , J. Math. Anal. Appl., 170(1992 pages 477–500) \ref\key 5
  • I. Kim, K. Kim and S. Park, Leray–Schauder alternatives for approximable maps in topological vector spaces , Math. Comput. Modelling, 35(2002 pages 385–391) \ref\key 7
  • D. O'Regan, Fixed point theory for closed multifunctions , Arch. Math. (Brno), 34(1998), 191–197 \ref\key 8
  • S. Park, A unified fixed point theory of multimaps on topological vector spaces , J. Korean Math. Soc., 35(1998 pages 803–829) \ref\key 9 ––––, The Leray–Schauder principles for condensing approximable and other multimaps , Nonlinear Anal. Forum, 4(1999 pages 157–173) \ref\key 10
  • F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York (1967)