Topological Methods in Nonlinear Analysis

Some existence results for dynamical systems on non-complete Riemannian manifolds

Elvira Mirenghi and Maria Tucci

Full-text: Access by subscription

Abstract

Let $\mathcal M^*$ be a non-complete Riemannian manifold with bounded topological boundary and $V\colon \mathcal M \to \mathbb R$ a $C^2$ potential function subquadratic at infinity.

In this paper we look for curves $x\colon [0,T]\to\mathcal M$ having prescribed period $T$ or joining two fixed points of $\mathcal M$, satisfying the system $$ D_t (\dot x(t))=-\nabla_R V(x(t)), $$ where $D_t(\dot x(t))$ is the covariant derivative of $\dot x$ along the direction of $\dot x$ and $\nabla_R V$ the Riemannian gradient of $V$.

We assume that $V(x) \to -\infty$ if $d(x,\partial\mathcal M)\to 0$ and, in the periodic case, suitable hypotheses on the sectional curvature of $\mathcal M$ at infinity.

We use variational methods in addition with a penalization technique and Morse index estimates.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 13, Number 1 (1999), 163-180.

Dates
First available in Project Euclid: 29 September 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1475178333

Mathematical Reviews number (MathSciNet)
MR1716590

Zentralblatt MATH identifier
0942.58022

Citation

Mirenghi, Elvira; Tucci, Maria. Some existence results for dynamical systems on non-complete Riemannian manifolds. Topol. Methods Nonlinear Anal. 13 (1999), no. 1, 163--180. https://projecteuclid.org/euclid.tmna/1475178333


Export citation

References

  • R. Bartolo, Periodic orbits on Riemannian manifolds with boundary , Discrete Contin. Dynam. Systems, 3 (1997), 439–450 \ref\no2
  • R. Bartolo and A. Masiello, Morse theory for trajectories of Lagrangian systems on Riemannian manifolds with convex boundary , Adv. Differential Equations, 2 (1997), 593–618 \ref\no3
  • V. Benci, Periodic solutions of Lagrangian systems on a compact manifold , J. Differential Equations, 63 (1986), 135–161 \ref\no4 ––––, A new approach to the Morse–Conley theory , Proceedings, International Conference, Recent Advances in Hamiltonian Systems 1986 (Dell'Antonio and B. D'Onofrio, eds.), Word Scientific, Singapore, L'Aquila (1987), 1–52 \ref\no5 ––––, A new approach to the Morse–Conley Theory and some applications , Ann. Mat. Pura Appl. (4), 158 (1991), 231–305 \ref\no6
  • V. Benci and D. Fortunato, On the existence of infinitely many geodesics on space-time manifolds , Adv. Math., 105 (1994), 1–25 \ref\no7
  • V. Benci, D. Fortunato and F. Giannoni, On the existence of trajectories in static Lorentz manifolds with singular boundary , Nonlinear Analysis, a tribute in honour of G. Prodi, Quaderni della Scuola Normale Superiore di Pisa (A. Ambrosetti and A. Marino Editors, eds.), Pisa (1991), 109–133 \ref\no8
  • V. Benci and F. Giannoni, On the existence of closed geodesics on non-compact Riemannian manifolds , Duke Math. J., 68 (1992), 195–215 \ref\no9
  • S. Cingolani, E. Mirenghi and M.Tucci, Periodic orbits and subharmonics of dynamical systems on non-compact Riemannian manifolds , J. Differential Equations, 130, (1996), 142–161 \ref\no10
  • E. Mirenghi and M. Tucci, Periodic solutions on non-compact Riemannian manifolds , Ann. Univ. Ferrara Sez. VII, XXXVIII (1992), 65–75 \ref\no11 ––––, Periodic solutions with prescribed energy on non-complete Riemannian manifolds , J. Math. Anal. Appl., 199 (1996), 334–348 \ref\no12
  • J. Milnor, Morse Theory ; Ann. of Math. Stud., 51 , Princeton Univ. Press, Princeton (1963) \ref\no13
  • J. Nash, The imbedding problem for Riemannian manifolds , Ann. Math., 63 (1956), 20–63 \ref\no14
  • B. O'Neil, Semi-Riemannian Geometry with Applications to Relativity ; Pure Appl. Math., 103 , Academic Press, New York (1983) \ref\no15
  • R. S. Palais, Homotopy theory of infinite dimensional manifolds , Topology, 5 (1966), 1–16 \ref\no16 ––––, Morse theory on Hilbert manifolds , Topology, 2 (1963), 299–340 \ref\no17
  • A. Salvatore, On the existence of infinitely many periodic solutions on non-complete Riemannian manifolds , J. Differential Equations, 120 (1995), 198–214 \ref\no18
  • J. T. Schwartz, Nonlinear Functional Analysis, Gordon and Breach, New York (1969)