Topological Methods in Nonlinear Analysis

Almost-periodicity problem as a fixed-point problem for evolution inclusions

Jan Andres and Alberto M. Bersani

Full-text: Open access

Abstract

Existence of almost-periodic solutions to quasi-linear evolution inclusions under a Stepanov almost-periodic forcing is nontraditionally examined by means of the Banach-like and the Schauder-Tikhonov-like fixed-point theorems. These multivalued fixed-point principles concern condensing operators in almost-periodic function spaces or their suitable closed subsets. The Bohr-Neugebauer-type theorem jointly with the Bochner transform are employed, besides another, for this purpose. Obstructions related to possible generalizations are discussed.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 18, Number 2 (2001), 337-349.

Dates
First available in Project Euclid: 22 August 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1471876705

Mathematical Reviews number (MathSciNet)
MR1911386

Zentralblatt MATH identifier
1013.34063

Citation

Andres, Jan; Bersani, Alberto M. Almost-periodicity problem as a fixed-point problem for evolution inclusions. Topol. Methods Nonlinear Anal. 18 (2001), no. 2, 337--349. https://projecteuclid.org/euclid.tmna/1471876705


Export citation

References

  • J. Andres, Bounded, almost-periodic and periodic solutions of quasi-linear differential inclusions , Differential Inclusions and Optimal Control, Lecture Notes in Nonlin. Anal. (J. Andres, L. Górniewicz and P. Nistri, eds.), 2 (1998), 35–50 \ref\key 2 ––––, Almost-periodic and bounded solutions of Carathéodory differential inclusions , Differential Inttegral Equations, 12 (1999), 887–912 \ref\key 3
  • J. Andres and R. Bader, Asymptotic boundary value problems in Banach spaces , Preprint (2001) \ref\key 4
  • J. Andres, A. M. Bersani and K. Leśniak, On some almost-periodicity problems in various metrics , Acta Appl. Math., 65(2001), 35–57 \ref\key 5
  • J. Andres, G. Gabor and L. Górniewicz, Boundary value problems on infinite intervals , Trans. Amer. Math. Soc., 351(1999), 4861–4903 \ref\key 6
  • J. Andres and L. Górniewicz, On the Banach contraction principle for multivalued mappings , Approximation, Optimization and Mathematical Economics (M. Lassonde, ed.), Physica–Verlag, Springer, Berlin (2001), 1–23 \ref\key 7
  • J. Andres and B. Krajc, Unified approach to bounded, periodic and almost-periodic solutions of differential systems , Ann. Math. Sil., 11(1997), 39–53 \ref\key 8
  • L. Amerio and G. Prouse, Almost-Periodic Functions and Functional Equations, Van Nostrand Reinhold Co., New York (1971) \ref\key 9
  • W. M. Bogdanowitz, On the existence of almost periodic solutions for systems of ordinary differential equations in Banach spaces , Arch. Rational Mech. Anal., 13 (1963), 364–370 \ref\key 10
  • B. F. Bylov, R. E. Vinograd, V. Ya. Lin and O. O. Lokutsievskiĭ, On the topological reasons for the anomalous behaviour of certain almost periodic systems , Problems in the Asymptotic Theory of Nonlinear Oscillations, Naukova Dumka, Kiev (1977), 54–61, (Russian) \ref\key 11
  • W. A Coppel, Almost periodic properties of ordinary differential equations , Ann. Mat. Pura Appl. (4), 76(1967), 27–50 \ref\key 12
  • C. Corduneanu, Almost periodic solutions to differential equations in abstract spaces , Rev. Roumaine Math. Pures Appl., 42(1997), 9–10 \ref\key 13
  • G. L. Cain, Jr. and M. Z. Nashed, Fixed points and stability for a sum of two operators in locally convex spaces , Pacific J. Math., 39(1971), 581–592 \ref\key 14
  • H. Covitz and S. B. Nadler, Multivalued contraction mappings in generalized metric spaces, Israel J. Math., 8 (1970), 5–11 \ref\key 15
  • L. I. Danilov, Measure-valued almost periodic functions and almost periodic selections of multivalued maps , Mat. Sb., 188 (1997), 3–24, (Russian);, Sbornik: Mathematics, 188 (1997), 1417–1438 \ref\key 16
  • Ju. L. Daleckiĭ and M. G. Krein, Stability of Solutions of Differential Equations and Banach Space , Trans. Math. Monogr., 43 , Amer. Math. Soc., Providence, R. I. (1974) \ref\key 17
  • A. M. Dolbilov and I. Ya. Shneiberg, Almost periodic multifunctions and their selections , Sibirsk. Math. Zh., 32 (1991), 172–175, (Russian) \ref\key 18
  • A. M. Fink, Compact families of almost periodic functions and an application of the Schauder fixed point theorem , SIAM J. Appl. Math., 17(1969), 1258–1262 \ref\key 19 ––––, Almost Periodic Differential Equations, LNM 377, Springer, Berlin (1974) \ref\key 20
  • A. M. Fink and G. Seifert, Non-resonance conditions for the existence of almost periodic solutions of almost periodic systems , SIAM J. Appl. Math., 21(1971), 362–366 \ref\key 21
  • G. Gabor, On the acyclicity of fixed point sets of multivalued maps, Topol. Methods Nonlinear Anal., 14 (1999), 327–343 \ref\key 22
  • A. Haraux, Asymptotic behavior for two-dimensional, quasi-autonomous, almost-periodic evolution equations , J. Differential Equations, 66 (1987), 62–70 \ref\key 23
  • S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis Theory, 1 , Kluwer, Dordrecht (1997) \ref\key 24
  • M. Kamenskiĭ, V. Obukhovskiĭ and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter, Berlin, to appear \ref\key 25
  • J. L. Massera and J. J. Schäfer, Linear Differential Equations and Function Spaces, Academic Press, New York (1966) \ref\key 26
  • G. Mehta, K.-K. Tan and X.-Z. Yuan, Fixed points, maximal elements and equilibria of generalized games , Nonlinear Anal., 28(1997), 689–699 \ref\key 27
  • A. A. Pankov, Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations, Kluwer, Dordrecht (1990) \ref\key 28
  • S. Park, Generalized Leray-Schauder principles for condensing admissible multifunctions , Ann. Mat. Pura Appl. (4), 172 (1997), 65–85 \ref\key 29 ––––, A unified fixed point theory of multimaps on topological vector spaces , J. Korean Math. Soc., 35 (1998), 803–829 \ref\key 30
  • B. N. Sadovskiĭ, Limit compact and condensing operators, Russian Math. Surveys, 27(1972), 85–155