Topological Methods in Nonlinear Analysis

Shadowing and inverse shadowing in set-valued dynamical systems. Hyperbolic case

Sergei Yu. Pilyugin and Janosch Rieger

Full-text: Open access

Abstract

We introduce a new hyperbolicity condition for set-valued dynamical systems and show that this condition implies the shadowing and inverse shadowing properties.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 32, Number 1 (2008), 151-164.

Dates
First available in Project Euclid: 13 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1463150469

Mathematical Reviews number (MathSciNet)
MR2466809

Zentralblatt MATH identifier
1172.54014

Citation

Pilyugin, Sergei Yu.; Rieger, Janosch. Shadowing and inverse shadowing in set-valued dynamical systems. Hyperbolic case. Topol. Methods Nonlinear Anal. 32 (2008), no. 1, 151--164. https://projecteuclid.org/euclid.tmna/1463150469


Export citation

References

  • E. Akin, Simplicial Dynamical Systems, 667 , Memoires of the Amer. Math. Soc. (1999) \ref\key 2
  • A. A. Al-Nayef, P. E. Kloeden and A. V. Pokrovskiĭ, Semi-hyperbolic mappings, condensing operators, and neutral delay equations , J. Differential Equations (1997, 137 ), 320–339 \ref\key 3
  • A. A. Al-Nayef et al., Bi-shadowing and delay equations , Dynam. Stability Systems (1996, 11 ), 121–134 \ref\key 4
  • J. P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin, Grundlehren der Mathematischen Wissenschaften (1984, 264 ) \ref\key 5
  • W.-J. Beyn, On the numerical approximation of phase portraits near stationary points , SIAM J. Numer. Anal. (1987, 24 ), 1095–1113 \ref\key 6
  • R. M. Corless and S. Yu. Pilyugin, Approximate and real trajectories for generic dynamical systems , J. Math. Anal. Appl. (1995, 189 ), 409–423 \ref\key 7
  • M. Frigon and A. Granas, Résultats du type de Leray–Schauder pour des contractions multivoques , Topol. Methods Nonlinear Anal. (1994, 4 ), 197–208 \ref\key 8
  • V. Glavan and V. Gutu, On the dynamics of contracting relations , Analysis and Optimization of Differential Systems, Kluwer Acad. Publ., Boston, MA (2003), 179–188 \ref\key 9 ––––, Attractors and fixed points of weakly contracting relations , Fixed Point Theory (2004, 5 ), 265–284 \ref\key 10
  • P. E. Kloeden and J. Ombach, Hyperbolic homeomorphisms are bishadowing , Ann. Polon. Math. (1997, 65 ), 171–177 \ref\key 11
  • M. Mazur, J. Tabor and P. Kościelniak, Semi-hyperbolicity and hyperbolicity , Discrete Contin. Dynam. Systems (2008, 20 ), 1029–1038 \ref\key 12
  • R. McGehee and E. Sander, Evelyn, A new proof of the stable manifold theorem , Z. Angew. Math. Phys. (1996, 47 ), 497–513 \ref\key 13
  • K. Palmer, Shadowing in Dynamical Systems. Theory and Applications, Kluwer, Dordrecht (2000) \ref\key 14
  • S. Yu. Pilyugin, Shadowing in Dynamical Systems, Springer, Berlin, Lecture Notes in Math., 1706 (1999) \ref\key 15
  • S. Yu. Pilyugin and J. Rieger, Shadowing and inverse shadowing in set-valued dynamical systems. Contractive case , to appear, Topol. Methods Nonlinear Anal. \ref\key 16
  • E. Sander, Hyperbolic sets for noninvertible maps and relations , Discrete Contin. Dynam. Systems (1999, 8 ), 339–357