Open Access
2008 Almost homoclinic solutions for the second order Hamiltonian systems
Joanna Janczewska
Topol. Methods Nonlinear Anal. 32(1): 131-137 (2008).

Abstract

The second order Hamiltonian system $\ddot{q}+V_{q}(t,q)=f(t)$, where $t\in\mathbb R$ and $q\in\mathbb R^n$, is considered. We assume that a potential $V\in C^{1}(\mathbb R\times\mathbb R^n,\mathbb R)$ is of the form $V(t,q)=-K(t,q)+W(t,q)$, where $K$ satisfies the pinching condition and $W_{q}(t,q)=o(|q|)$, as $|q|\to 0$ uniformly with respect to $t$. It is also assumed that $f\in C(\mathbb R,\mathbb R^n)$ is non-zero and sufficiently small in $L^{2}(\mathbb R,\mathbb R^n)$. In this case $q\equiv 0$ is not a solution. Therefore there are no orbits homoclinic to $0$ in a classical sense. However, we show that there is a solution emanating from $0$ and terminating at $0$. We are to call such a solution almost homoclinic to $0$. It is obtained here as a weak limit in $W^{1,2}(\mathbb R,\mathbb R^n)$ of a sequence of almost critical points.

Citation

Download Citation

Joanna Janczewska. "Almost homoclinic solutions for the second order Hamiltonian systems." Topol. Methods Nonlinear Anal. 32 (1) 131 - 137, 2008.

Information

Published: 2008
First available in Project Euclid: 13 May 2016

zbMATH: 1223.37076
MathSciNet: MR2466807

Rights: Copyright © 2008 Juliusz P. Schauder Centre for Nonlinear Studies

Vol.32 • No. 1 • 2008
Back to Top