Topological Methods in Nonlinear Analysis

On singular nonpositone semilinear elliptic problems

Dinh Dang Hai

Full-text: Open access


We prove the existence of a large positive solution for the boundary value problems $$ \begin{alignat}{2} -\Delta u &=\lambda (-h(u)+g(x,u))&\quad& \text{in }\Omega , \\ u &=0 &\quad &\text{on }\partial \Omega , \end{alignat} $$ where $\Omega $ is a bounded domain in ${\mathbb R}^{N}$, $\lambda $ is a positive parameter, $g(x,\cdot)$ is sublinear at $\infty$, and $h$ is allowed to become $\infty $ at $u=0$. Uniqueness is also considered.

Article information

Topol. Methods Nonlinear Anal., Volume 32, Number 1 (2008), 41-47.

First available in Project Euclid: 13 May 2016

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Hai, Dinh Dang. On singular nonpositone semilinear elliptic problems. Topol. Methods Nonlinear Anal. 32 (2008), no. 1, 41--47.

Export citation


  • H. Brezis, Analyse Functionnelle, Theorie et Applications, second edition, Masson, Paris (1983) \ref\key 2
  • H. Brezis and L. Oswald, Remarks on sublinear elliptic equations , Nonlinear Anal., 12(1988), 1203–1219 \ref\key 3
  • E. N. Dancer, On the number of positive solutions of semilinear elliptic systems , Proc. London. Math. Soc., 53 (1986), 429–452 \ref\key 4
  • D. Gilbarg and N. S. Trundinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin (1977) \ref\key 5
  • D. D. Hai and R. C. Smith, On uniqueness for a class of nonlinear boundary value problems , Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 779–784 \ref\key 6
  • S. S. Lin, On the number of positive solutions for nonlinear elliptic equations when a parameter is large , Nonlinear Anal., 16 (1991), 283–297 \ref\key 7
  • P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, Siam Rev., 24(1982), 441–467 \ref\key 8
  • V. Schuchman, About uniqueness for nonlinear boundary value problems, Math. Ann., 267 (1984), 537–542 \ref\key 9
  • M. Wiegner, A uniqueness theorem for some nonlinear boundary value problems with a large parameter, Math. Ann., 270 (1985), 401–402