Topological Methods in Nonlinear Analysis

New application of homotopy perturbation method to ZK-MEW equation

Jia-Cheng Lan, Jia-Min Zhu, and Zheng-Yi Ma

Full-text: Open access

Abstract

The work presents a derivation of solitary solutions of the two-dimensional Zakharov-Kuznetsov Modified Equal Width (ZK-MEW) equation using the homotopy perturbation method.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 31, Number 2 (2008), 235-242.

Dates
First available in Project Euclid: 13 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1463150267

Mathematical Reviews number (MathSciNet)
MR2432081

Zentralblatt MATH identifier
1153.65103

Citation

Lan, Jia-Cheng; Zhu, Jia-Min; Ma, Zheng-Yi. New application of homotopy perturbation method to ZK-MEW equation. Topol. Methods Nonlinear Anal. 31 (2008), no. 2, 235--242. https://projecteuclid.org/euclid.tmna/1463150267


Export citation

References

  • \refG. M. Abd El-Latif, A homotopy and a perturbation technique for non-linear problems, Appl. Math. Comput., 169(2005), 576–588
  • \refP. D. Ariel, T. Hayat and S. Asghar, Homotopy perturbation method and axisymmetric flow over a stretching sheet, Internat. J. Nonlinear Sci. Numer. Simul., 7 (2006), 399–406
  • \ref R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalyst, I , Clarendon Press, Oxford (1975)
  • \refA. Belendez, A. Hernandez, T. Belendez, et al., Application of He's homotopy perturbation method to the Duffing-harmonic oscillator, Internat. J. Nonlinear Sci. Numer. Simul., 8 (2007), 79–88
  • \refJ. Biazar, M. Eslami and H. Ghazvini, Homotopy perturbation method for systems of partial differential equations, Internat. J. Nonlinear Sci. Numer. Simul., 8 (2007), 413–418
  • \refJ. P. Boyd, An analytical and numerical study of the two-dimensional Bratu equation, J. Sci. Comput., 1 (1986), 183–206 \ref––––, Chebyshev polynomial expansions for simultaneous approximation of two branches of a function with application to the one-dimensional Bratu equation, Appl. Math. Comput., 142(2003), 189–200
  • \ref E. Y. Deeba and S. A. Khuri, A decomposition method for solving the nonlinear Klein–Gordon equation , J. Comput. Phys., 124 (1996), 442–448
  • \ref E. Deeba, S. A. Khuri and S. Xie, An algorithm for solving boundary value problems, J. Comput. Phys., 159(2000), 125–138
  • \refD. D. Ganji and A. Sadighi, Application of He's homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations, Internat. J. Nonlinear Sci. Numer. Simul., 7 (2006), 411–418 \ref\no
  • 11 Q. K. Ghori, M. Ahmed and A. M. Siddiqui, Application of homotopy perturbation method to squeezing flow of a Newtonian fluid, Internat. J. Nonlinear Sci. Numer. Simul., 8 (2007), 179–184
  • \refJ. H. He, A coupling method of homotopy technique and perturbation technique for nonlinear problems, Internat. J. Non-Linear Mech., 35 (2000), 37–43 \ref––––, Homotopy perturbation method for bifurcation of nonlinear problems , Inernat. J. Nonlinear. Sci. Num. Simul., 6 (2005), 207–208 \ref––––, Homotopy perturbation method for solving boundary value problems, Phys. Lett. A, 350(2006), 87–88 \ref ––––, Homotopy perturbation technique, Comput. Methods Appl. Mech. Engrg., 178(1999), 257–262 \ref ––––, Newton-like iteration method for solving algebraic equation, Comm. Nonlinear Sci. Num. Simul., 3 (1998), 106–109 \ref ––––, Variational iteration method –- a kind of non-linear analytical technique: Some examples, Internat. J. Non-Linear Mech., 34 (1999), 699–708 \ref––––, Some asymptotic methods for strongly nonlinear equations, Internat. J. Modern Phys. B, 20 (2006), 1141–1199
  • \refS. A. Khuri, A new approach to Bratu's problem , Appl. Math. Comput., 147(2004), 131–136
  • \refS. J. Liao and A. T. Chwang, Application of homotopy analysis method in nonlinear oscillations, ASME J. Appl. Mech., 65 (1998), 914–915
  • \refA. H. Nayfeh, Perturbation Methods, Wiley, New York (2000)
  • \ref T. Ozis and A. Yildirim, Traveling wave solution of Korteweg–de Vries equation using He's homotopy perturbation method, Internat. J. Nonlinear Sci. Numer. Simul., 8 (2007), 239–242 \ref ––––, A comparative study of He's homotopy perturbation method for determining frequency-amplitude relation of a nonlinear oscillator with discontinuities , Internat. J. Nonlinear Sci. Numer. Simul., 8 (2007), 243–248
  • \refM. Rafei and D. D. Ganji, Explicit solutions of Helmholtz equation and fifth-order KdV equation using homotopy perturbation method, Internat. J. Nonlinear Sci. Numer. Simul., 7 (2006), 321–328
  • \refA. Sadighi and D. D. Ganji, Solution of the generalized nonlinear Boussinesq equation using homotopy perturbation and variational iteration methods, Internat. J. Nonlinear Sci. Numer. Simul., 8 (2007), 319–328
  • \ref D. H. Shou, Application of parameter-expanding method to strongly nonlinear oscillators, Internat. J. Nonlinear Sci. Numer. Simul., 8 (2007), 121–124
  • \ref M. I. Syam and A. Hamdan, An efficient method for solving Bratu equations, Appl. Math. Comput., 176(2006), 704–713
  • \ref H. Tari, D. D. Ganji and M. Rostamian, Approximate solutions of $K (2,2)$, KdV and modified KdV equations by variational iteration method, homotopy perturbation method and homotopy analysis method , Internat. J. Nonlinear Sci. Numer. Simul., 8 (2007), 203–210
  • \ref Y.Q. Wan, Q. Guo and N. Pan, Thermo-electro-hydrodynamic model for electrospinning process, Internat. J. Nonlinear Sci. Numer. Simul., 5 (2004), 5–8
  • \refA. M. Wazwaz, Adomian decomposition method for a reliable treatment of the Bratu-type equations , Appl. Math. Comput., 166(2005), 152–633
  • \refE. Yusufoglu, Homotopy perturbation method for solving a nonlinear system of second order boundary value problems , Internat. J. Nonlinear Sci. Numer. Simul., 8 (2007), 353–358