Topological Methods in Nonlinear Analysis

Asymtotically stable one-dimensional compact minimal sets

Konstantin Athanassopoulos

Full-text: Open access

Abstract

It is proved that an asymptotically stable, $1$-dimensional, compact minimal set $A$ of a continuous flow on a locally compact, metric space $X$ is a periodic orbit, if $X$ is locally connected at every point of $A$. So, if the intrinsic topology of the region of attraction of an isolated, $1$-dimensional, compact minimal set $A$ of a continuous flow on a locally compact, metric space is locally connected at every point of $A$, then $A$ is a periodic orbit.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 30, Number 2 (2007), 397-406.

Dates
First available in Project Euclid: 13 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1463150099

Mathematical Reviews number (MathSciNet)
MR2387834

Zentralblatt MATH identifier
1145.37014

Citation

Athanassopoulos, Konstantin. Asymtotically stable one-dimensional compact minimal sets. Topol. Methods Nonlinear Anal. 30 (2007), no. 2, 397--406. https://projecteuclid.org/euclid.tmna/1463150099


Export citation

References

  • \ref\key 1 G. Allaud and E. S. Thomas, Almost periodic minimal sets , J. Differential Equations, 15(1974), 158–171
  • \ref\key 2 K. Athanassopoulos, Cohomology and asymptotic stability of $1$-dimensional continua , Manuscripta Math., 72(1991), 415–423 \ref\key 3 ––––, Remarks on the region of attraction of an isolated invariant set , Colloq. Math., 104(2006), 157–167 \ref\key 4
  • M. W. Hirsch and M. Hurley, Connected components of attractors and other stable sets , Aequ. Math, 53 (1997), 308–323
  • \ref\key 5 K. Kuratowski, Topology, I , Academic Press, New York (1966)
  • \ref\key 6 J. W. Robbin and D. Salamon, Dynamical systems, shape theory and the Conley index , Ergodic Theory Dynam. Systems, 8$^*$ (1988), 375–393 \ref\key 7
  • P. A. Schweitzer, Counterexamples to the Seifert conjecture and opening closed leaves of foliations , Ann. of Math., 100(1974), 386–400