Topological Methods in Nonlinear Analysis

Existence theory for single and multiple solutions to singular boundary value problems for second order impulsive differential equations

Li Zu, Xiaoning Lin, and Daqing Jiang

Full-text: Open access

Abstract

In this paper we present some new existence results for singular boundary value problems for second order impulsive differential equations. Our nonlinearity may be singular in its dependent variable.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 30, Number 1 (2007), 171-191.

Dates
First available in Project Euclid: 13 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1463150079

Mathematical Reviews number (MathSciNet)
MR2363660

Zentralblatt MATH identifier
1144.34018

Citation

Zu, Li; Lin, Xiaoning; Jiang, Daqing. Existence theory for single and multiple solutions to singular boundary value problems for second order impulsive differential equations. Topol. Methods Nonlinear Anal. 30 (2007), no. 1, 171--191. https://projecteuclid.org/euclid.tmna/1463150079


Export citation

References

  • R. P. Agarwal and D. O'Regan, Multiple nonnegative solutions for second order impulsive differential equations , Appl. Math. Comput. (2000, 114 ), 51–59 \ref\key 2 ––––, Existence theory for singular and multiple solutions to singular positone boundary value problems , J. Differential Equations, 175 (2001), 393–414 \ref\key 3
  • W. Ding and M. Han, Periodic boundary value problem for the second order impulsive functional differential equations , Appl. Math. Comput. (2004, 155 A ), 709–726 \ref\key 4
  • D. Guo, The Order Methods in Nonlinear Analysis, Shandong Technical and Science Press, Jinan (2005) \ref\key 5
  • S. G. Hristova and D. D. Bainov, Monotone-iterative techniques of V. Lakshmikantham for a boundary value problem for systems of impulsive differential-difference equations , J. Math. Anal. Appl. 1996 (1997), 1–13 \ref\key 6
  • V. Lakshmik ntham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore (1989) \ref\key 7
  • E. K. Lee and Y. H. Lee, Multiple positive solutions of singular two point boundary value problems for second order impulsive differential equation , Appl. Math. Comput. (2004, 158 ), 745–759 \ref\key 8
  • X. Liu and D. Guo, Periodic Boundary value problems for a class of second-Order impulsive integro-differential equations in Banach spaces , Appl. Math. Comput. (1997, 216 ), 284–302 \ref\key 9
  • D. O'Regan, Existence principles and theory for singular Dirichlet boundary value problems , Differential Equations Dynam. Systems, 3 (1995), 289–305 \ref\key 10 ––––, Existence theory for nonlinear ordinary differential equations, Kluwer Acad. Publ., Dordrecht (1997) \ref\key 11
  • I. Rachunkova and J. Tomecek, Impulsive \romBVPs with nonlinear boundary conditions for the second order differential equations without growth restrictions, J. Math. Anal. Appl. (2004, 292 ), 525–539 \ref\key 12
  • Z. Wei, Periodic boundary value problems for second order impulsive integrodifferential equations of mixed type in Banach spaces , J. Math. Anal. Appl. (1995, 195 ), 214–229 \ref\key 13
  • Xiaoning Lin and Daqing Jiang, Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equations , J. Math. Anal. Appl., 321 (2006), 501–514