Topological Methods in Nonlinear Analysis

On pairs of polynomial planar foliations

Regilene D. S. Oliveira and Marco Antonio Teixeira

Full-text: Open access

Abstract

In this article we deal with pairs of polynomial planar foliations. The main results concern global and local structural stability as well as the finite determinacy for these pairs. These results can be applied to study a special class of quadratic differential forms in the plane.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 30, Number 1 (2007), 139-155.

Dates
First available in Project Euclid: 13 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1463150077

Mathematical Reviews number (MathSciNet)
MR2363658

Zentralblatt MATH identifier
1137.37011

Citation

Oliveira, Regilene D. S.; Teixeira, Marco Antonio. On pairs of polynomial planar foliations. Topol. Methods Nonlinear Anal. 30 (2007), no. 1, 139--155. https://projecteuclid.org/euclid.tmna/1463150077


Export citation

References

  • D. V. Anosov, Geodesic flows on closed riemannian manifolds of negative curvature , Proc. Steklov Math. Inst., 90 (1967);, Amer. Math. Soc. Transl. (1969) \ref\key 2
  • J. W. Bruce and D. L. Fidal, On binary differential equations and umbilics , Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 147–168 \ref\key 3
  • J. W. Bruce and F. Tari, On binary differential equations, Nonlinearity, 8 (1995), 255–271, no. 2 \ref\key 4
  • A. Cima and J. Llibre, Algebraic and topological classification of homogeneous cubic vector fields in the plane, J. Math. Anal. Appl., 147, no. 2 (1990), 420–448 \ref\key 5
  • C. B. Collins, Algebraic classification of homogeneous polynomial vector fields in the plane, Japan J. Indust. Appl. Math., 13 (1996, no. 1), 63–91 \ref\key 6
  • A. A. Davydov, Qualitative Theory of Control Systems , Translations of Mathematical Monographs, 141 , Amer. Math. Soc., Mir Publishers (1994) \ref\key 7
  • A. A. Davydov and E. Rosales-González, Smooth normal forms of folded resonance saddles and nodes and complete classification of generic linear second order PDE's on the plane , International Conference on Differential Equations (Lisboa, 1995), 59–68 \ref\key 8
  • V. Guíñez, Positive quadratic differential forms and foliations with singularities on surfaces, Trans. Amer. Math. Soc., 309 (1988, no. 2), 477–502 \ref\key 9 ––––, Locally stable singularities for positive quadratic differential forms, J. Differential Equations, 110 (1994), 1–37, no. 1 \ref\key 10 ––––, Positive quadratic differential forms: linearization, finite determinacy and versal unfolding, Ann. Fac. Sci. Toulouse Math. (6), 5 (1996, no. 4), 661–690 \ref\key 11 ––––, Nonorientable polynomial foliations on the plane , J. Differential Equations, 87 (1990), 391–411 \ref\key 12
  • C. Gutierrez, R. D. S. Oliveira and M. A. Teixeira, Positive quadratic differential forms: topological equivalence throught Newton polyhedra , J. Dynam. Control Systems, 12 (2006, no. 4), 489–516 \ref\key 13
  • B. Jakubczyk and M. Ya. Zhitomirsskiĭ, Singularities and normal forms of generic $2$-distributions on $3$-manifolds , Studia Math., 113, no. 3 (1995), 223–247 \ref\key 14
  • A. G. Kuz'min, Non-classical equations of mixed type and applications in gas dynamics , Internacional Series of Numerical Mathematics, 109 , Basel–Boston–Berlin, Birkhäuser (1992) \ref\key 15
  • J. Llibre and J. S. P. Del Río and J. A. Rodrígues, Structural stability of planar homogeneous polynomial vector fields: applications to critical points and to infinity, J. Differential Equations, 125 (1996), 490–520 \ref\key 16
  • M-F. Michel, Formes normales de certaines équations différentielles quadratiques \rom(Normal forms for some quadratic differential equations\rom), C. R. Acad. Sci. Paris Sér. I Math., 321 (1995), 283–286, no. 3 \ref\key 17
  • M. Peixoto, On structural stability, Ann. of Math. (2), 69 (1959), 199–222 \ref\key 18 ––––, Structural stability on two-dimensional manifolds , Topology, I (1962), 101–120 \ref\key 19
  • R. D. S. Oliveira and F. Tari, On pairs of differential $1$-forms in the plane, Discrete Contin. Dynam. Systems, 6 , no. 3 (2000), 519–536 \ref\key 20 ––––, On pairs of regular foliations $1$-forms in the plane, Hokkaido Math. J., 6, no. 3 (2002), 523–537 \ref\key 21
  • K. S. Sibirsky, Structure and stability of gradient polynomial vector fields, J. London Math. Soc., 41 (1990), 109–121 \ref\key 22
  • S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967.) \ref\key 23
  • J. Sotomayor and C. Gutierrez, Structural stable configurations of lines of principal curvature, Astérisque, 98–99 (1982.) \ref\key 24
  • M. A. Teixeira, On structural stability of pairings of vector fields and functions, Bol. Soc. Brasil. Mat., 9, no. 2 (1978), 63–82