Topological Methods in Nonlinear Analysis

Existence of solutions for a nonlinear wave equation

Marek Galewski and Andrzej Nowakowski

Full-text: Open access


We prove the existence of a strong solution of a periodic-Dirichlet problem for the semilinear wave equation with irrational period and with nonlinearity satisfying some general growth conditions locally around $0$. We construct a new variational method, called a dual method, and using relations between critical points and critical values of the primal action and the dual action functionals we prove that the solution exists. The dual functional which we define is different from the ones known so far in that it depends on two dual variables.

Article information

Topol. Methods Nonlinear Anal., Volume 28, Number 2 (2006), 385-399.

First available in Project Euclid: 13 May 2016

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Galewski, Marek; Nowakowski, Andrzej. Existence of solutions for a nonlinear wave equation. Topol. Methods Nonlinear Anal. 28 (2006), no. 2, 385--399.

Export citation


  • D. Bambusi, Families of periodic solutions of resonant \romPDEs, J. Nonlinear Sci., 11 (2001), 69–87 \ref\key 2
  • A. K. Ben-Naoum, On the Dirichlet problem for the nonlinear wave equation in bounded domains with corner points , Bell. Belg. Math. Soc., 3 (1996), 345–361 \ref\key 3
  • A. K. Ben-Naoum and J. Mawhin, The periodic-Dirichlet problems for some semilinear wave equations , J. Differential Equations, 96 (1992), 340–354 \ref\key 4
  • J. Berkovits and J. Mawhin, Diophantine approximation, Bessel functions and radially symmetric periodic solutions of semilinear wave equations in a ball , Trans. Amer. Math. Soc., 353 (2001), 5041–5055 \ref\key 5
  • M. Berti, Multiplicity of periodic solutions of nonlinear wave equations , Nonlinear Anal., 56 (2004), 1011–1046 \ref\key 6
  • J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of $2D$ linear Schrödinger equations , Ann. of Math., 148 , no. 2 (1998), 363–439 \ref\key 7
  • W. Craig, Problémes de petits diviseurs dans les équations aux dérivées partielles, Société Mathématique de France, Paris (2000) \ref\key 8
  • R. de la Llave, Variational methods for quasi-periodic solutions of partial differential equations , World Sci. Monogr. Ser. Math., 6 \ref\key 9
  • I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam (1976) \ref\key 10
  • S. Kuksin, Analysis of Hamiltonian \romPDEs, Oxford Lecture Ser. Math. Appl., 19 \ref\key 11
  • J. Mawhin, Problèmes de Dirichlet variationnels non linéaires, Les Presses de l'Université de Montréal (1987) \ref\key 12
  • J. Mawhin and A. Fonda, Iterative and Variational Methods for the Solvability of Some Semilinear Equations in Hilbert Spaces , J. Differential Equations, 98 (1992), 355–375 \ref\key 13
  • J. Mawhin and M. Willem, Critical Point Theory, Springer–Verlag, New York (1989) \ref\key 14
  • Ch. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer–Verlag, Berlin (1966) \ref\key 15
  • A. Nowakowski, A New Variational Principle and Duality for Periodic Solutions of Hamilton's Equations , J. Differential Equations, 97 (1992), 174–188 \ref\key 16
  • A. Nowakowski and A. Rogowski, Existence of space periodic solutions for semi-linear hyperbolic systems. Controllability , Advances in Systems Sciences: Measurement, Circuits and Control (2001), 223–228 \ref\key 17
  • R. T. Rockafellar, Convex Integral Functionals and Duality, (E. Zarantonello, ed.), Contributions to Nonlinear Functional Analysis, Academic Press, New York (1971), 215–236 \ref\key 18
  • O. Vejvoda et al., Partial Differential Equations: Time-Periodic Solutions, Sijthoff & Noordhoff, Alphen aan den Rijn (1981) \ref\key 19
  • C. Eugene Wayne, Periodic solutions of nonlinear partial differential equations , Notices Amer. Math. Soc., 44 , no. 8 (1997), 895–902