Topological Methods in Nonlinear Analysis

Existence and multiplicity results for semilinear equations with measure data

Alberto Ferrero and Claudio Saccon

Full-text: Open access

Abstract

In this paper, we study existence and nonexistence of solutions for the Dirichlet problem associated with the equation $-\Delta u=g(x,u)+\mu$ where $\mu$ is a Radon measure. Existence and nonexistence of solutions strictly depend on the nonlinearity $g(x,u)$ and suitable growth restrictions are assumed on it. Our proofs are obtained by standard arguments from critical theory and in order to find solutions of the equation, suitable functionals are introduced by mean of approximation arguments and iterative schemes.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 28, Number 2 (2006), 285-318.

Dates
First available in Project Euclid: 13 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1463144819

Mathematical Reviews number (MathSciNet)
MR2289689

Zentralblatt MATH identifier
1136.35044

Citation

Ferrero, Alberto; Saccon, Claudio. Existence and multiplicity results for semilinear equations with measure data. Topol. Methods Nonlinear Anal. 28 (2006), no. 2, 285--318. https://projecteuclid.org/euclid.tmna/1463144819


Export citation

References

  • S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary value conditions I, Comm. Pure Appl. Math, 12(1959), 623–727 \ref \key 2
  • H. Amann and P. Quittner, Elliptic boundary value problems involving measures: existence, regularity and multiplicity , Adv. Differential Equations, 3-6 (1998), 753–813 \ref\key 3
  • A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications , J. Funct.Anal., 14(1973), 349–381 \ref\key 4
  • P. Bénilan and H. Brezis, Nonlinear problems related to the Thomas–Fermi equation, J. Evol. Equations, 3(2004), 673–770, Dedicated to P. Bénilan \ref\key 5
  • L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87(1989), 149–169 \ref\key 6
  • L. Boccardo, T. Gallouët and Orsina, Existence and nonexistence of solutions for some nonlinear elliptic equations , J. Anal. Math., 73(1997), 203–223 \ref\key 7
  • H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa, Blow up for $u_{t}-\Delta u=g(u)$ revisited , Adv. Differential Equations, 1 (1996), 73–90 \ref\key 8
  • H. Brezis, M. Marcus and A. Ponce, Nonlinear elliptic equations with measures revisited, Preprint (2005) \ref\key 9
  • H. Brezis, L. Veron, Removable singularities for some nonlinear elliptic equations, Arch. Rational Mech. Anal., 75 (1980/81), 1–6 \ref\key 10
  • D. G. Costa and A. S. Oliveira, Existence of solution for a class of semilinear elliptic problems at double resonance, Bol. Soc. Brasil Mat., 19(1988), 21–37 \ref \key 11
  • A. Ferrero and C. Saccon, Existence and multiplicity results for semilinear elliptic equations with measure data and jumping nonlinearities , Quaderni Dip. Mat. Appl. Univ. Pisa “Ulisse Dini”, May 2006 \ref\key 12
  • D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer–Verlag (1998) \ref\key 13
  • P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations , CBMS Regional Conf. Ser. in Math., 65 (1986) \ref\key 14
  • G. Stampacchia, Equations elliptiques du second ordre à coefficients discontinus , Les Presses de l'Université de Montréal (1966) \ref\key 15
  • M. Struwe, Variational Methods, Springer Ed. (2000) \ref\key 16
  • G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré, 9 (1992), 281–304