Topological Methods in Nonlinear Analysis

On the Fučík spectrum for elliptic systems

Eugenio Massa and Bernhard Ruf

Full-text: Open access

Abstract

We propose an extension of the concept of Fučík spectrum to the case of coupled systems of two elliptic equations, we study its structure and some applications. We show that near a simple eigenvalue of the system, the Fučík spectrum consists (after a suitable reparametrization) of two (maybe coincident) $2$-dimensional surfaces. Furthermore, by variational methods, parts of the Fučík spectrum which lie far away from the diagonal (i.e. from the eigenvalues) are found. As application, some existence, non-existence and multiplicity results to systems with eigenvalue crossing ("jumping") nonlinearities are proved.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 27, Number 2 (2006), 195-228.

Dates
First available in Project Euclid: 13 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1463144520

Mathematical Reviews number (MathSciNet)
MR2237452

Zentralblatt MATH identifier
1132.35360

Citation

Massa, Eugenio; Ruf, Bernhard. On the Fučík spectrum for elliptic systems. Topol. Methods Nonlinear Anal. 27 (2006), no. 2, 195--228. https://projecteuclid.org/euclid.tmna/1463144520


Export citation

References

  • V. Benci and P. H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math., 52(1979, no. 3), 241–273 \ref\key 2
  • M. Cuesta, D. de Figueiredo and J.-P. Gossez, The beginning of the Fučik spectrum for the $p$-Laplacian, J. Differential Equations, 159(1999, no. 1), 212–238 \ref\key 3
  • M. Cuesta and J.-P. Gossez, A variational approach to nonresonance with respect to the Fučik spectrum, Nonlinear Anal., 19(1992, no. 5), 487–500 \ref\key 4
  • E. N. Dancer, On the Dirichlet problem for weakly non-linear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 76(1976/77, no. 4), 283–300 \ref\key 5
  • E. N. Dancer and Y. H. Du, Competing species equations with diffusion, large interactions, and jumping nonlinearities , J. Differential Equations, 114(1994, no. 2), 434–475 \ref\key 6
  • D. G. de Figueiredo, J. M. do Ó and B. Ruf, Critical and subcritical elliptic systems in dimension two, Indiana Univ. Math. J., 53 (2004, no. 4), 1037–1054 \ref\key 7
  • D. G. de Figueiredo and P. L. Felmer, On superquadratic elliptic systems, Trans. Amer. Math. Soc., 343(1994, no. 1), 99–116 \ref\key 8
  • D. G. de Figueiredo and J.-P. Gossez, On the first curve of the Fučik spectrum of an elliptic operator , Differential Integral Equations, 7(1994, no. 5–6), 1285–1302 \ref\key 9
  • D. G. de Figueiredo and B. Ruf, On the periodic Fučik spectrum and a superlinear Sturm-Liouville equation , Proc. Roy. Soc. Edinburgh Sect. A, 123(1993, no. 1), 95–107 \ref\key 10
  • S. Fučík, Boundary value problems with jumping nonlinearities , Časopis P\v est. Mat., 101(1976, no. 1), 69–87 \ref\key 11
  • T. Gallouët and O. Kavian, Résultats d'existence et de non-existence pour certains problèmes demi-linéaires à l'infini , Ann. Fac. Sci. Toulouse Math. (5), 3(1981, no. 3–4), 201–246 ; (1982) \ref\key 12
  • J. Glover, A. C. Lazer and P. J. McKenna, Existence and stability of large scale nonlinear oscillations in suspension bridges , Z. Angew. Math. Phys., 40(1989, no. 2), 172–200 \ref\key 13
  • J. Hulshof and R. van der Vorst, Differential systems with strongly indefinite variational structure , J. Funct. Anal., 114(1993, no. 1), 32–58 \ref\key 14
  • A. C. Lazer and P. J. McKenna, Nonlinear periodic flexing in a floating beam, J. Comput. Appl. Math., 52(1994, no. 1–3), 287–303 ;, Oscillations in nonlinear systems: applications and numerical aspects \ref\key 15
  • C. A. Magalhães, Semilinear elliptic problem with crossing of multiple eigenvalues, Comm. Partial Differential Equations, 15 (1990, no. 9), 1265–1292 \ref\key 16
  • E. Massa, On a variational characterization of the Fučí k spectrum of the Laplacian and a superlinear Sturm-Liouville equation, , Proc. Roy. Soc. Edinburgh Sect. A, 134(2004, no. 3), 557–577 \ref\key 17
  • P. J. McKenna and K. S. Moore, Mathematics arising from suspension bridge dynamics: recent developments, Jahresber. Deutsch. Math.-Verein., 101(1999, no. 4), 178–195 \ref\key 18
  • B. Ruf, On nonlinear elliptic problems with jumping nonlinearities , Ann. Mat. Pura Appl. (4), 128(1981), 133–151