Topological Methods in Nonlinear Analysis

Poincaré-Hopf type formulas on convex sets of Banach spaces

Thomas Bartsch and Norman Dancer

Full-text: Open access

Abstract

We consider locally Lipschitz and completely continuous maps $A\colon C\to C$ defined on a closed convex subset $C\subset X$ of a Banach space $X$. The main interest lies in the case when $C$ has empty interior. We establish Poincaré-Hopf type formulas relating fixed point index information about $A$ with homology Conley index information about the semiflow on $C$ induced by $-{\rm id}+A$. If $A$ is a gradient we also obtain results on the critical groups of isolated fixed points of $A$ in $C$.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 34, Number 2 (2009), 213-229.

Dates
First available in Project Euclid: 27 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461786795

Mathematical Reviews number (MathSciNet)
MR2604444

Zentralblatt MATH identifier
1196.37034

Citation

Bartsch, Thomas; Dancer, Norman. Poincaré-Hopf type formulas on convex sets of Banach spaces. Topol. Methods Nonlinear Anal. 34 (2009), no. 2, 213--229. https://projecteuclid.org/euclid.tmna/1461786795


Export citation

References

  • H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces , SIAM Review, 18 (1976), 620–709 \ref\key 2
  • T. Bartsch, N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system , Calc. Var. Partial Differential Equations. DOI 10.1007/s00526-009-0265-y \ref\key 3
  • T. Bartsch, Z.-Q. Wang and J. Wei, Bound states for a coupled Schrödinger system , J. Fixed Point Theory Appl., 2 (2007), 353–367 \ref\key 4
  • N. Dancer, On the indices of fixed points of mappings in cones and applications , J. Math. Anal. Appl., 91 (1983), 131–151 \ref\key 5 ––––, Multiple fixed points of positive mappings , J. Reine Angew. Math., 371 (1986), 46–66 \ref\key 6
  • K. Deimling, Nonlinear Functional Analysis, Springer–Verlag, Berlin–Heidelberg (1985) \ref\key 7
  • Y. Du, On Dancer's fixed point index formulas , Differenial Integral Equations, 13 (2000), 145–158 \ref\key 8
  • J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer–Verlag, New York (1989) \ref\key 9
  • R. Nussbaum, The fixed point index and some applications , Presses l'Univ. Montréal, 94 (1985), 1–145 \ref\key 10
  • M. Morse, Singular points of vector fields under general boundary conditions , Amer. J. Math., 51 (1929), 165–178 \ref\key 11
  • K. Rybakowski, On the homotopy index for infinite-dimensional semiflows , Trans. Amer. Math. Soc., 269 , 351–382 \ref\key 12 ––––, The Homotopy Index and Partial Differential Equations, Springer–Verlag, Berlin (1987) \ref\key 13
  • R. Srzednicki, Generalized Lefschetz theorem and a fixed point index formula , Topology Appl., 81 (1997), 207–224 \ref\key 14