Topological Methods in Nonlinear Analysis

Natural topologies on Colombeau algebras

Jorge Aragona, Roseli Fernandez, and Stanley O. Juriaans

Full-text: Open access


We define intrinsic, natural and metrizable topologies ${\mathcal T}_{\Omega}, {\mathcal T}, {\mathcal T}_{s,\Omega}$ and ${\mathcal T}_s$ in ${\mathcal G}(\Omega), \overline{\mathbb K}, {\mathcal G}_s(\Omega)$ and $\overline{\mathbb K}_s$, respectively. The topology ${\mathcal T}_{\Omega}$ induces ${\mathcal T}, {\mathcal T}_{s,\Omega}$ and ${\mathcal T}_s$. The topologies ${\mathcal T}_{s,\Omega}$ and ${\mathcal T}_s$ coincide with the Scarpalezos sharp topologies.

Article information

Topol. Methods Nonlinear Anal., Volume 34, Number 1 (2009), 161-180.

First available in Project Euclid: 27 April 2016

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Aragona, Jorge; Fernandez, Roseli; Juriaans, Stanley O. Natural topologies on Colombeau algebras. Topol. Methods Nonlinear Anal. 34 (2009), no. 1, 161--180.

Export citation


  • J. Aragona, Colombeau generalized functions on quasi-regular sets , Publ. Math. Debrecen (2006), 371–399 \ref\key 2
  • J. Aragona and H. Biagioni, Intrinsic definition of the Colombeau algebra of generalized functions , Anal. Math., 17 (1991), 75–132 \ref\key 3
  • J. Aragona, A. R. G. Garcia and S. O. Juriaans, Generalized Solutions of a Nonlinear Parabolic Equation with Generalized Functions as Initial Data , Nonlinear Anal. Ser. A, to appear \ref\key 4
  • J. Aragona and S. O. Juriaans, Some structural properties of the topological ring of Colombeau's generalized numbers , Comm. Algebra, 29 (2001), 2201–2230 \ref\key 5
  • J. Aragona, S. O. Juriaans, O. Oliveira and D. Scarpalezos, Algebraic and geometric theory of topological algebra of generalized functions of Colombeau , Proc. Edinburgh Math. Soc. (2008, 51 ), 1–20 \ref\key 6
  • N. Bourbaki, Topologie Generale, Hermann, Paris (1960) \ref\key 7
  • H. Brézis and A. Friedman, Nonlinear parabolic equations involving measures as initial conditions , J. Math. Pures Appl. (9) (1983, 62 ), 73–97 \ref\key 8
  • J. F. Colombeau and M. Langlais, Generalized solutions of nonlinear parabolic equations with distributions as initial conditions , J. Math. Anal. Appl, 145 (1990), 186–196 \ref\key 9
  • M. Grosser, M. Kunzinger, M. Oberguggenberger, R. Steinbauer, Geometric Theory of Generalized Functions with Applications to General Relativity, Kluwer Acad. Publ., 537 (2001) \ref\key 10
  • T. Husain, Multiplicative functionals in topological algebras , Pitman Research Notes Math., 85 (1983) \ref\key 11
  • S. Lang, Algebra, Addison–Wesley (1969) \ref\key 12