Topological Methods in Nonlinear Analysis

On a $p$-superlinear Neumann $p$-Laplacian equation

Sergiu Aizicovici, Nikolaos S. Papageorgiou, and Vasile Staicu

Full-text: Open access


We consider a nonlinear Neumann problem, driven by the $p$-Laplacian, and with a nonlinearity which exhibits a $p$-superlinear growth near infinity, but does not necessarily satisfy the Ambrosetti-Rabinowitz condition. Using variational methods based on critical point theory, together with suitable truncation techniques and Morse theory, we show that the problem has at least three nontrivial solutions, of which two have a fixed sign (one positive and the other negative).

Article information

Topol. Methods Nonlinear Anal., Volume 34, Number 1 (2009), 111-130.

First available in Project Euclid: 27 April 2016

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Aizicovici, Sergiu; Papageorgiou, Nikolaos S.; Staicu, Vasile. On a $p$-superlinear Neumann $p$-Laplacian equation. Topol. Methods Nonlinear Anal. 34 (2009), no. 1, 111--130.

Export citation


  • R. Adams, Sobolev Spaces, Academic Press, New York (1975) \ref\key 2
  • S. Aizicovici, N. S. Papageorgiou and V. Staicu, Existence of multiple solutions with precise sign information for superlinear Neumann problems , Ann. Mat. Pura Appl., to appear \ref\key 3 ––––, The spectrum and an index formula for the Neumann $p$-Laplacian and multiple solutions for problems with crossing nonlinearity , Discrete Contin. Dynam. Systems, to appear \ref\key 4 ––––, Three nontrivial solutions for $p$-Laplacian Neumann problems with a concave nonlinearity near the origin, Contemp. Math., to appear \ref\key 5 ––––, Multiple nontrivial solutions for nonlinear periodic problems wih the $p$-Laplacian , J. Differential Equations, 243, 504–535 (2007) \ref\key 6
  • G. Anello, Existence of infinitely many weak solutions for a Neumann problem, Nonlinear Anal., 57, 199–209 (2004) \ref\key 7
  • G. Barletta and N. S. Papageorgiou, A multiplicity theorem for the Neumann $p$-Laplacian with an asymmetric nonsmooth potential, J. Global Optim., 39, 365–392 (2007) \ref\key 8
  • P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity, Nonlinear Anal., 7, 981–1012 (1983) \ref\key 9
  • T. Bartsch and S. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, Nonlinear Anal., 28, 419–441 (1997) \ref\key 10
  • T. Bartsch and Z. Liu, On the superlinear elliptic $p$-Lapacian equation, J. Differential Equations, 198, 149–175 (2004) \ref\key 11
  • G. Bonanno and P. Candito, Three solutions to a Neumann problem for elliptic equations involving the $p$-Laplacian , Arch. Math., 80, 424–429 (2003) \ref\key 12
  • K. C. Chan, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston (1993) \ref\key 13
  • D. G. Costa and C. A. Magalhães, Existence results for perturbations of the $p$-Laplacian , Nonlinear Anal., 24, 409–418 (1995) \ref\key 14
  • M. Degiovanni and S. Lancelotti, Linking over cones and nontrivial solutions for p-Laplacian equations with p-superlinear nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24, 907–919 (2007) \ref\key 15
  • J. Dugundji, Topology, Allyn and Bacon Inc., Boston (1966) \ref\key 16
  • \by \hskip-1ptF. Faraci, Multiplicity results for a \hskip-0.5ptNeumann problem involving the $p$-\hskip-0.5ptLaplacian, J. Math. Anal. Appl., 277, 180–189 (2003) \ref\key 17
  • M. Filippakis, L. Gasinski and N. S. Papageorgiou, Multiplicity results for nonlinear Neumann problems , Canadian J. Math., 58, 64–92 (2006) \ref\key 18
  • L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis, Chapman & Hall/CRC Press, Boca Raton (2006) \ref\key 19
  • A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York (2005) \ref\key 20
  • O. Ladyzhenskaya and N. Uraltseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York (1968) \ref\key 21
  • G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12, 1203–1219 (1988) \ref\key 22
  • S. Liu, Existence of solutions to a superlinear $p$-Laplacian equations, Electronic J. Differential Equations (2001, 66), 1–6 \ref\key 23
  • J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer–Verlag, New York (1989) \ref\key 24
  • D. Motreanu, V. Motreanu and N. S. Papageorgiou, Nonlinear Neumann problems near reasonance , Indiana Univ. Math. J., to appear \ref\key 25
  • D. Motreanu and N. S. Papageorgiou, Existence and multiplicity of solutions for Neumann problems , J. Differential Equations, 232, 1–35 (2007) \ref\key 26
  • K. Perera, Nontrivial solutions of $p$-superlinear $p$-Laplacian problems, Appl. Anal., 82, 883–888 (2003) \ref\key 27
  • B. Ricceri, On a three critical points theorem , Arch. Math., 75, 220–226 (2000) \ref\key 28 ––––, Infinitely many solutions of the Neumann problem for elliptic equations involving the $p$-Laplacian , Bull. London Math. Soc., 33, 331–340 (2001) \ref\key 29
  • M. Struwe, Three nontrivial solutions of anticoercive boundary value problems for the pseudo-Laplace operator , J. Reine Angew. Math., 325, 68–74 (1981) \ref\key 30
  • J. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12, 191–202 (1984) \ref\key 31
  • Z. Q. Wang, On a superlinear elliptic equation , Ann. Inst. H. Poincaré Anal. Non Linéaire, 8, 43–58 (1991) \ref\key 32
  • X. Wu and K. K. Tan, On the existence and multiplicity of solutions of Neumann boundary value problems for quasilinear elliptic equations, Nonlinear Anal., 65, 1334–1347 (2006)