Topological Methods in Nonlinear Analysis

Equivariant path fields on topological manifolds

Lucília Borsari, Fernanda Cardona, and Peter Wong

Full-text: Open access

Abstract

A classical theorem of H. Hopf asserts that a closed connected smooth manifold admits a nowhere vanishing vector field if and only if its Euler characteristic is zero. R. Brown generalized Hopf's result to topological manifolds, replacing vector fields with path fields. In this note, we give an equivariant analog of Brown's theorem for locally smooth $G$-manifolds where $G$ is a finite group.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 33, Number 1 (2009), 1-15.

Dates
First available in Project Euclid: 27 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461782235

Mathematical Reviews number (MathSciNet)
MR2512950

Zentralblatt MATH identifier
1178.55001

Citation

Borsari, Lucília; Cardona, Fernanda; Wong, Peter. Equivariant path fields on topological manifolds. Topol. Methods Nonlinear Anal. 33 (2009), no. 1, 1--15. https://projecteuclid.org/euclid.tmna/1461782235


Export citation

References

  • G. Allaud and E. Fadell, A fiber homotopy extension theorem , Trans. Amer. Math. Soc., 104(1962), 239–251 \ref\key 2
  • S. Antonian, Equivariant embeddings into $G$-\romAR's, Glasnik Mat. Ser. III, 22 \rom(42) (1987), 503–533 \ref\key 3
  • K. K. Azad and K. Srivastava, On $S$-equivariant complete invariance property , J. Indian Math. Soc., 62(1996), 205–209 \ref\key 4
  • K. Borsuk, Zur kombinatorischen Eigenschaften der Retrakte , Fund. Math., 19(1932), 220–242 \ref\key 5
  • G. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York, London (1972) \ref\key 6
  • R. Brooks, Dominating polyhedra , unpublished notes (2003) \ref\key 7
  • R. Brown, Path fields on manifolds , Trans. Amer. Math. Soc., 118(1965), 180–191 \ref\key 8
  • R. Brown and E. Fadell, Nonsingular path fields on compact topological manifolds , Proc. Amer. Math. Soc., 16(1965), 1342–1349 \ref\key 9
  • E. Fadell, Generalized normal bundles for locally-flat manifolds , Trans. Amer. Math. Soc., 114(1965), 488–513 \ref\key 10 ––––, A remark on simple path fields in polyhedra of characteristic zero , Rocky Mountain J. Math., 4(1974), 65–68 \ref\key 11
  • D. Ferrario, A fixed point index for equivariant maps , Topol. Methods Nonlinear Anal., 116(2001), 57–71 \ref\key 12
  • O. Hanner, Some theorems on absolute neighborhood retracts , Ark. Mat., 1(1951), 389–408 \ref\key 13
  • H. Hopf, Vektorfelder in $n$-dimensionalen Mannigfaltigkeiten , Math. Ann., 96(1927), 225–250 \ref\key 14
  • W. Hurewicz, On the concept of fiber space, PNAS, 41(1955), 956–961 \ref\key 15
  • M. Izydorek and A. Vidal, An example concerning equivariant deformation , Topol. Methods Nonlinear Anal., 15(2000), 187–190 \ref\key 16
  • B. Jiang, A note on equivariant vector fields , Acta Math. Sci. (English ed.), 11(1991), 274–282 \ref\key 17
  • B. Jiang and H. Schirmer, Fixed point sets of continuous selfmaps on polyhedra , Fixed Point Theory (E. Fadell and G. Fournier, eds.), Lect. Notes Math., 886 , Springer–Verlag, New York (1981), 171–177 \ref\key 18
  • K. Komiya, A necessary and sufficient condition for the existence of non-singular $G$-vector fields on $G$-manifolds , Osaka J. Math., 13(1976), 537–546 \ref\key 19 ––––, $G$-manifolds and $G$-vector fields with isolated zeros , Proc. Japan Acad. Ser. A Math. Sci., 54(1978), 124–127 \ref\key 20
  • S. Kwasik, On the homotopy type of $G$-manifolds and $G$-\romANRs, Bull. Acad. Polon. Sci. S. Sci. Math., 28(1980), 509–515 \ref\key 21
  • M. Murayama, On $G$-\romANR's and their $G$-homotopy types, Osaka J. Math., 20(1983), 479–512 \ref\key 22
  • J. Nash, A path space and the Stiefel–Whitney classes , Proc. Nat. Acad. Sci. U.S.A., 41(1955), 320–321 \ref\key 23
  • H. Schirmer, Fixed point sets of continuous selfmaps , Fixed Point Theory (E. Fadell and G. Fournier, eds.), Lect. Notes Math., 886 , Springer–Verlag, New York (1981), 417–428 \ref\key 24
  • R. Stern, Stability implies normal and disc bundles , Bull. Amer. Math. Soc., 79(1973), 133–135 \ref\key 25
  • D. Wilczyński, Fixed point free equivariant homotopy classes , Fund. Math., 123(1984), 47–60 \ref\key 26