Topological Methods in Nonlinear Analysis

Periodic solutions to nonlinear equations with oblique boundary conditions

Walter Allergretto and Duccio Papini

Full-text: Open access

Abstract

We study the existence of positive periodic solutions to nonlinear elliptic and parabolic equations with oblique and dynamical boundary conditions and non-local terms. The results are obtained through fixed point theory, topological degree methods and properties of related linear elliptic problems with natural boundary conditions and possibly non-symmetric principal part. As immediate consequences, we also obtain estimates on the principal eigenvalue for non-symmetric elliptic eigenvalue problems.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 40, Number 2 (2012), 225-243.

Dates
First available in Project Euclid: 21 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461259700

Mathematical Reviews number (MathSciNet)
MR3074464

Citation

Allergretto, Walter; Papini, Duccio. Periodic solutions to nonlinear equations with oblique boundary conditions. Topol. Methods Nonlinear Anal. 40 (2012), no. 2, 225--243. https://projecteuclid.org/euclid.tmna/1461259700


Export citation

References

  • T. Aiki, Periodic stability of solutions to some degenerate parabolic equations with dynamic boundary conditions , J. Math. Soc. Japan, 48(1996), 37–59 \ref\key 2
  • W. Allegretto and P. Nistri, Existence and optimal control for periodic parabolic equations with nonlocal terms , IMA J. Math. Control Inform., 16(1999), 43–58 \ref\key 3
  • J. Andres and L. Górniewicz, Topological Fixed Point Principles for Boundary Value Problems, Kluwer Academic Publishers (2003) \ref\key 4
  • F. Andreu, N. Igbida, J.M. Mazón and J. Toledo, Renormalized solutions for degenerate elliptic-parabolic problems with nonlinear dynamical boundary conditions and $L^1$-data , J. Differential Equations, 244 (2008), 2764–2803 \ref\key 5
  • G. Auchmuty, Steklov eigenproblems and the representation of solutions of elliptic boundary value problems , Numer. Funct. Anal. Optim., 25(2004), 321–348 \ref\key 6
  • A. Calsina and C. Perello, Equations for biological evolution, , Proc. Royal Soc. Edinburgh Sect. A, 125(1995), 939–958 \ref\key 7
  • A. Calsina, C. Perello and J. Saldana, Non-local reaction-diffusion equations modelling predator-prey coevolution , Publ. Mat., 38(1994), 315–325 \ref\key 8
  • C.C. Casal, J.I. Díaz and J.M. Vegas, Blow-up in functional partial differential equations with large amplitude memory terms , XXI Congreso de Ecuaciones Diferenciales y Aplicaciones, XI Congreso de Matemática Aplicada, Ciudad Real, 21–25 (2009). http://matematicas.uclm.es/cedya09/archive/textos/123_Casal-Piga-A.pdf \ref\key 9
  • C. Cavaterra, C.G. Gal, M. Grasselli and A. Miranville, Phase-field systems with nonlinear coupling and dynamic boundary conditions , Nonlinear Anal., 72(2010), 2375–2399 \ref\key 10
  • L. Cherfils and A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials , Appl. Math., 54(2009), 89–115 \ref\key 11
  • R. Chill, E. Fašangová and J. Prüss, Convergence to steady states of solutions of the Cahn–Hilliard and Caginalp equations with dynamic boundary conditions , Math. Nachr., 279(2006), 1448–1462 \ref\key 12
  • C.M. Elliott, Y. Giga and S. Goto, Dynamic boundary conditions for Hamilton–Jacobi equations , SIAM J. Math. Anal., 34(2003), 861–881 \ref\key 13
  • J. Escher, Nonlinear elliptic systems with dynamic boundary conditions , Math. Z., 210(1992), 413–439 \ref\key 14 ––––, Quasilinear parabolic systems with dynamical boundary conditions , Comm. Partial Differential Equations, 18(1993), 1309–1364 \ref\key 15 ––––, On the qualitative behaviour of some semilinear parabolic problems , Differential Integral Equations, 8(1995), 247–267 \ref\key 16
  • Z.-H. Fan and C.-K. Zhong, Attractors for parabolic equations with dynamic boundary conditions , Nonlinear Anal., 68(2008), 1723–1732 \ref\key 17
  • C.G. Gal and M. Warma, Well posedness and the global attractor of some quasi-linear parabolic equations with nonlinear dynamic boundary conditions , Differential Integral Equations, 23(2010), 327–358 \ref\key 18
  • G. Galiano and J. Velasco, A dynamic boundary value problem arising in the ecology of mangroves , Nonlinear Anal. Real World Appl., 7(2006), 1129–1144 \ref\key 19
  • G. Gilardi, A. Miranville and G. Schimperna, Long time behavior of the Cahn–Hilliard equation with irregular potentials and dynamic boundary conditions , Chinese Ann. Math. Ser. B, 31(2010), 679–712.= \ref\key 20
  • M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials , Discrete Contin. Dynam. Systems, 28(2010), 67–98 \ref\key 21
  • D. Guidetti, On elliptic boundary value problems with dynamic boundary conditions of parabolic type , Differential Integral Equations, 7(1994), 873–884 \ref\key 22
  • T. Hinterman, Evolution equations with dynamic boundary conditions , Proc. Roy. Soc. Edinburgh Sect. A, 113(1989), 43–60 \ref\key 23
  • B.A. Jucker, H. Harms and A.J.B. Zehnder, Adhesion of the positively charged bacterium Stenotrophomonas \rom(Xanthomonas\rom) maltophilia \rom70401 to glass and teflon, J. Bacteriol., 178(1996), 5472–5479 \ref\key 24
  • G.S. Ladde, V. Lakshmikantham and A.S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Monographs, Advanced Texts and Surveys in Pure and Applied Mathematics, 27 , Pitman (Advanced Publishing Program) Boston, MA; distributed by John Wiley & Sons, Inc., New York (1985) \ref\key 25
  • O.A. Ladyzhenskaya and N.N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London (1968) \ref\key 26
  • O. Ladyzenskaja, V.A. Solonnikov and N.N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs, 23 , Amer. Math. Soc., Providence (1968) \ref\key 27
  • S. Lenhart and V. Protopopescu Optimal control for parabolic systems with competitive interactions, Math. Methods Appl. Sci., 17(1994), 509–524 \ref\key 28
  • A. Miranville and S. Zelik, The Cahn–Hilliard equation with singular potentials and dynamic boundary conditions , Discrete Contin. Dynam. Systems, 28(2010), 275–310 \ref\key 29
  • C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York (1992) \ref\key 30
  • J. Petersson, a note on quenching for parabolic equations with dynamic boundary conditions , Nonlinear Anal., 58(2004), 417–423 \ref\key 31
  • J.F. Rodrigues, V.A. Solonnikov and F. Yi, On a parabolic system with time derivative in the boundary conditions and related free boundary problems , Math. Ann., 315(1999), 61–95 \ref\key 32
  • G.M. Troianiello, Elliptic Differential Equations and Obstacle Problems, The University Series in Mathematics, Plenum Press, New York (1987) \ref\key 33
  • J.L. Vázquez and E. Vitillaro, Heat equation with dynamical boundary conditions of reactive type , Comm. Partial Differential Equations, 33(2008), 561–612 \ref\key 34 ––––, On the Laplace equation with dynamical boundary conditions of reactive-diffusive type , J. Math. Anal. Appl., 354(2009), 674–688 \ref\key 35
  • E. Vitillaro, Global existence for the heat equation with nonlinear dynamical boundary conditions , Proc. Roy. Soc. Edinburgh Sect. A, 135(2005), 175–207 \ref\key 36 ––––, On the Laplace equation with non-linear dynamical boundary conditions , Proc. London Math. Soc., 93(2006), 418–446 \ref\key 37
  • H. Wu and S. Zheng, Convergence to equilibrium for the Cahn–Hilliard equation with dynamic boundary conditions , J. Differential Equations, 204(2004), 511–531 \ref\key 38
  • Z. Yin, Global existence for elliptic equations with dynamic boundary conditions , Arch. Math., 81(2003), 567–574