Topological Methods in Nonlinear Analysis

Bifurcations of random differential equations with bounded noise on surfaces

Ale Jan Homburg and Todd R. Young

Full-text: Open access

Abstract

In random differential equations with bounded noise minimal forward invariant (MFI) sets play a central role since they support stationary measures. We study the stability and possible bifurcations of MFI sets. In dimensions 1 and 2 we classify all minimal forward invariant sets and their codimension one bifurcations in bounded noise random differential equations.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 35, Number 1 (2010), 77-97.

Dates
First available in Project Euclid: 21 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461249003

Mathematical Reviews number (MathSciNet)
MR2677432

Zentralblatt MATH identifier
1230.37066

Citation

Homburg, Ale Jan; Young, Todd R. Bifurcations of random differential equations with bounded noise on surfaces. Topol. Methods Nonlinear Anal. 35 (2010), no. 1, 77--97. https://projecteuclid.org/euclid.tmna/1461249003


Export citation

References

  • L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer–Verlag, Berlin (1998) \ref\key 2
  • L. Arnold and W. Kliemann, Qualitative Theory of Stochastic Systems , Probabilistic Analysis and Related Topics (A. T. Barucha-Reid, ed.), 3 , Academic Press, New York (1983) \ref\key 3 ––––, On unique ergodicity for degenerate diffusions, Stochastics, 21 (1987), 41–61 \ref\key 4
  • J. P. Aubin and A. Cellina, Differential inclusions, Springer–Verlag, Berlin (1984) \ref\key 5
  • F. Colonius, T. Gayer and W. Kliemann, Near invariance for Markov diffusive systems , SIAM J. Appl. Dynam. Systems, 7 (2007), 79–107 \ref\key 6
  • F. Colonius, A. J. Homburg and W. Kliemann, Near invariance and local transience for random diffeomorphisms , J. Differ. Equations Appl., to appear \ref\key 7
  • F. Colonius and W. Kliemann, Topological, smooth and control techniques for perturbed systems , Stochastic Dynamic (H. Crauel and M. Gundlach, eds.), Springer–Verlag, New York (1999) \ref\key 8 ––––, The Dynamics of Control, with an appendix by Lars Grace, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA (2000) \ref\key 9
  • J. L. Doob, Stochastic Processes, Wiley, New York (1953) \ref\key 10
  • T. Gayer, Control sets and their boundaries under parameter variation , J. Differential Equations, 201 (2004), 177–200 \ref\key 11
  • M. Hirsch, Differential Topology, Springer–Verlag, GTM, 33 (1976) \ref\key 12
  • A. J. Homburg and T. Young, Hard bifurcations in dynamical systems with bounded random perturbations , Regular Chaotic Dynamics, 11 (2006), 247–258 \ref\key 13
  • W. Kliemann, Recurrence and invariant measures for degenerate diffusions , Ann. Probab., 15 (1987), 690–707 \ref\key 14
  • H. Kunita, Stochastic flows and stochastic differential equations , Cambridge University Press (1990) \ref\key 15
  • Yu. A. Kuznetsov, Elements of applied bifurcation theory , 112, Applied Mathematical Sciences , Springer–Verlag, New York, third edition (2004) \ref\key 16
  • H. Zmarrou and A. J. Homburg, Bifurcations of stationary densities of random diffeomorphisms , Ergodic Theory Dynam. Systems, 27 (2007), 1651–1692 \ref\key 17 ––––, Dynamics and bifurcations of random circle diffeomorphisms , Discrete Contin. Dynam. Systems Ser. B, 10 (2008), 719–731