Topological Methods in Nonlinear Analysis

Some nonlocal elliptic problem involving positive parameter

Anmin Mao, Runan Jing, Shixia Luan, Jinling Chu, and Yan Kong

Full-text: Open access

Abstract

We consider the following superlinear Kirchhoff type nonlocal problem: $$ \begin{cases} \displaystyle -\bigg(a+b\int_\Omega |\nabla u|^2dx\bigg)\Delta u =\lambda f(x,u) & \text{in } \Omega,\ a > 0, \ b > 0, \ \lambda > 0, \\ u=0 &\text{on } \partial\Omega. \end{cases} $$ Here, $f(x,u)$ does not satisfy the usual superlinear condition, that is, for some $\theta > 0$, $$ 0\leq F(x,u)\overset{\triangle}{=} \int_0^u f(x,s)ds \leq \frac1{2+\theta}f(x,u)u, \quad \text{for all } (x,u)\in \Omega \times \mathbb{R}^+ $$ or the following variant $$ 0\leq F(x,u) \overset{\triangle}{=} \int_0^u f(x,s)ds \leq \frac1{4+\theta}f(x,u)u, \quad \text{for all } (x,u)\in \Omega \times \mathbb{R}^+ $$ which is quiet important and natural. But this superlinear condition is very restrictive eliminating many nonlinearities. The aim of this paper is to discuss how to use the mountain pass theorem to show the existence of non-trivial solution to the present problem when we lose the above superlinear condition. To achieve the result, we first consider the existence of a solution for almost every positive parameter $\lambda$ by varying the parameter $\lambda$. Then, it is considered the continuation of the solutions.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 42, Number 1 (2013), 207-220.

Dates
First available in Project Euclid: 21 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461247301

Mathematical Reviews number (MathSciNet)
MR3155623

Zentralblatt MATH identifier
1291.35086

Citation

Mao, Anmin; Jing, Runan; Luan, Shixia; Chu, Jinling; Kong, Yan. Some nonlocal elliptic problem involving positive parameter. Topol. Methods Nonlinear Anal. 42 (2013), no. 1, 207--220. https://projecteuclid.org/euclid.tmna/1461247301


Export citation

References

  • C.O. Alves and F.J.S.A. Corr\v ea, Positive solutions for a quasilinear elliptic equation of Kirchhoff type , Comput. Math. Appl., 49 (2005), 85–93 \ref\key 2
  • A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications , J. Func. Anal., 14 (1973), 349–381 \ref\key 3
  • D. Andrade and T.F. Ma, An operator equation suggested by a class of nonlinear stationary problems , Commun. Appl. Nonl. Anal., 4 (1997), 65–71 \ref\key 4
  • A. Arostio and S. Pannizi, On the well-posedness of the Kirchhoff string , Trans. Amer. Math. Soc., 348 (1996), 305–330 \ref\key 5
  • S. Bernstein, Sur une classe d'équations fonctionnelles aux dérivées partielles , Izv. Akad. Nauk SSSR Ser. Mat., 1 (1940), – 17-26 \ref\key 6
  • M.M. Cavalcanti, V.N. Domingos Cavalcanti and J.A. Soriano, Global existence and uniform decay rates for the Kirchhoff–Carrier equation with nonlinear dissipation , Adv. Differential Equations, 6 (2001), 701–730 \ref\key 7
  • B.T. Cheng and X. Wu, Existence results of positive solutions of Kirchhoff type problems , Nonlinear Anal., 71 (2009), 4883–4892 \ref\key 8
  • M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems , Nonlinear Anal., 30 (1997), 4619–4627 \ref\key 9
  • P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data , Invent. Math., 108 (1992), 247–262 \ref\key 10
  • G. Kirchhoff, Mechanik, Teubner, Leipzig (1883) \ref\key 11
  • J.L. Lions, On some questions in boundary value problems of mathematical physics , Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Proc. Internat. Sympos. Inst. Mat., Univ. Fed. Rio de Janeiro, 1977, 30, North-Holland, Amsterdam, New York (1978), 284–346 \ref\key 12
  • T.F. Ma and J.E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem , Appl. Math. Lett., 16 (2003), 243–248 \ref\key 13
  • A. Mao and Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the \romP.S. condition, Nonlinear Anal., 70 (2009), 1275–1287 \ref\key 14
  • O.H. Miyagaki and M.A.S. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition , J. Differential Equations, 245 (2008), 3628–3638 \ref\key 15
  • S.I. Pohožaev, A certain class of quasilinear hyperbolic equations , Mat. Sb. (N.S.), 96 (1975), 152–166 \ref\key 16
  • M. Schechter and W. Zou, Superlinear problems , Pacific J. Math., 214 (2004), 145–160 \ref\key 17
  • Z. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow , J. Math. Anal. Appl., 317 (2006), 456–463