Topological Methods in Nonlinear Analysis

Abstract Cauchy problem for fractional functional differential equations

Yong Zhou, Feng Jiao, and Josip Pečarić

Full-text: Open access

Abstract

In this paper, the existence and continuation of solutions for the Cauchy initial value problem of fractional functional differential equations in an arbitrary Banach space is discussed under hypotheses based on Carathéodory condition and the measure of noncompactness. In addition, an example is given to show that the criteria on existence of solutions for the initial value problem of fractional differential equations in finite-dimensional spaces may not be true in infinite-dimensional cases.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 42, Number 1 (2013), 119-136.

Dates
First available in Project Euclid: 21 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461247296

Mathematical Reviews number (MathSciNet)
MR3155618

Zentralblatt MATH identifier
1292.34075

Citation

Zhou, Yong; Jiao, Feng; Pečarić, Josip. Abstract Cauchy problem for fractional functional differential equations. Topol. Methods Nonlinear Anal. 42 (2013), no. 1, 119--136. https://projecteuclid.org/euclid.tmna/1461247296


Export citation

References

  • R.P. Agarwal, M. Benchohra and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations , Acta Appl. Math. (2009) \ref\key 2
  • J. Banas and K. Goebel, Measure of Noncompactness in Banach Spaces, Marcel Dekker Inc., New York (1980) \ref\key 3
  • M. Benchohra, J. Henderson, S.K. Ntouyas and A. Ouahab, Existence results for fractional order functional differential equations with infinite delay , J. Math. Anal. Appl., 338 (2008), 1340-1350 \ref\key 4
  • D. Bugajewska and P. Kasprzak, On the existence, uniqueness and topological structure of solution sets to a certain fractional differential equation , Comput. Math. Appl., 59 (2009), 1108–1116 \ref\key 5
  • Y.K. Chang and J.J. Nieto, Some new existence results for fractional differential inclusions with boundary conditions , Math. Comput. Modelling, 49 (2009), 605–609 \ref\key 6
  • J.V. Devi and V. Lakshmikantham, Nonsmooth analysis and fractional differential equations , Nonlinear Anal., 70 (2009), 4151–4157 \ref\key 7
  • J. Dieudonne, Deux examples dequations differentielles , Acta. Sci. Math., 12B (1950), 38–40 \ref\key 8
  • Daftardar-Gejji and H. Jafari, Analysis of a system of nonautonomous fractional differential equations involving caputo derivatives , J. Math. Anal. Appl., 328 (2007), 1026–1033 \ref\key 9
  • A.A. Kilbas, H.M. Srivastava and J. Juan Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006 \ref\key 10
  • V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, New York (1969) \ref\key 11
  • V. Lakshmikantham, S. Leela and J. Vasundhara Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers (2009) \ref\key 12
  • V. Lakshmikantham and J. Vasundhara Devi, Theory of fractional differential equations in a Banach space , Eur. J. Pure Appl. Math., 1 (2008), 38–45 \ref\key 13
  • V. Lakshmikantham and A.S. Vatsala, Basic theory of fractional differential equations , Nonlinear Anal., 69 (2008), 2677–2682 \ref\key 14
  • W. Lin, Global existence theory and chaos control of fractional differential equations , J. Math. Anal. Appl., 332 (2007), 709–726 \ref\key 15
  • V. Lupulescu, Causal functional differential equations in Banach spaces , Nonlinear Anal., 69 (2008), 4787–4795 \ref\key 16
  • K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York (1993) \ref\key 17
  • G.M. N'Guerekata, A Cauchy problem for some fractional abstract differential equation with non local conditions , Nonlinear Anal., 70 (2009), 1873–1876 \ref\key 18
  • D. Guo, Existence of positive solutions for $n$th-order nonlinear impulsive singular integro-differential equations in Banach spaces , Nonlinear Anal., 68 (2008), 2727–2740 \ref\key 19
  • D. O'Regan and R. Precup, Existence criteria for integral equations in Banach spaces , J. Inequal. Appl., 6 (2001), 77–97 \ref\key 20
  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999) \ref\key 21
  • H.A.H. Salem, On the nonlinear Hammerstein integral equations in Banach spaces and application to the boundary value problem of fractional order , Math. Comput. Modelling, 70 (2009), 1873–1876 \ref\key 22
  • J. Wei, The constant variation formulae for singular fractional differential systems with delay , Comput. Math. Appl., 59 (2009), 1184–1190 \ref\key 23
  • S. Zhang, Positive solutions to singular boundary value problem for nonlinear fractional differential equation , Comput. Math. Appl., 59 (2009), 1300–1309 \ref\key 24
  • Y. Zhou, F. Jiao and J. Li, Existence and uniqueness for $p$-type fractional neutral differential equations , Nonlinear Anal., 71 (2009), 2724–2733 \ref\key 25 ––––, Existence and uniqueness for fractional neutral differential equations with infinite delay , Nonlinear Anal., 71 (2009), 3249–3256