Topological Methods in Nonlinear Analysis

On vector fields having properties of Reeb fields

Bogusław Hajduk and Rafał Walczak

Full-text: Open access

Abstract

We study constructions of vector fields with properties which are characteristic to Reeb vector fields of contact forms. In particular, we prove that all closed oriented odd-dimensional manifold have geodesible vector fields.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 41, Number 2 (2013), 401-408.

Dates
First available in Project Euclid: 21 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461245485

Mathematical Reviews number (MathSciNet)
MR3114315

Zentralblatt MATH identifier
1317.53113

Citation

Hajduk, Bogusław; Walczak, Rafał. On vector fields having properties of Reeb fields. Topol. Methods Nonlinear Anal. 41 (2013), no. 2, 401--408. https://projecteuclid.org/euclid.tmna/1461245485


Export citation

References

  • J.W. Alexander, A lemma on systems of knotted curves , Proc. Nat. Acad. Sci. USA, 9(1923), 93–95 \ref\key 2
  • S.J. Altschuler and L.F. Wu, On deforming confoliations , J. Differential Geometry (2000, 54 ), 75–97 \ref\key 3
  • W.M. Boothby and H.-C. Wang, On contact manifolds , Ann. of Math. (2), 68 , 721–734 (1958) \ref\key 4
  • Y. Carrière, Flots riemanniens, Structures transverses des feuilletages , Astérisque, 116 , 31–52 (1984) \ref\key 5
  • Y. Eliashberg and W.P. Thurston, Confoliations University Lecture Series, Amer. Math. Soc, 13 (1998) \ref\key 6
  • E. Giroux and J.-P. Mohsen, Structures de contact et fibrations symplectiques au-dessus du cercle , in preparation \ref\key 7
  • H. Gluck, Dynamical behavior of geodesic fields , Global Theory of Dynamical Systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), Lecture Notes in Math., 819 , 190–215, Springer (1980) \ref\key 8
  • J. Martinet, Formes de contact sur les variétés de dimension $3$ , Proc. Liverpool Singularities Sympos. II, Lecture Notes in Math., 209 , Springer–Verlag, Berlin (1971), 142–163 \ref\key 9
  • D. McDuff, Applications of convex integration to symplectic and contact geometry , Ann. Inst. Fourier, 37 (1987), 107–133 \ref\key 10
  • D. Martínez, V. Muñoz and F. Presas, Open Book Decompositions for Almost Contact Manifolds, Proceedings of the XI Fall Meeting in Geometry and Physics, Publicaciones de la RSME, 6(2003), 131–149 \ref\key 11
  • F. Quinn, Open book decompositions, and the bordism of automor- phisms, Topology, 18 , 55–73 (1979) \ref\key 12
  • A. Ranicki and E. Winkelnkemper, High-dimensional Knot Theory: Algebraic Surgery in Codimension \rom2, Springer (1998) \ref\key 13
  • D. Sullivan, A foliation of geodesics is characterized by having no “tangent homologies” , J. Pure Appl. Algebra, 13 , 101–104 (1978) \ref\key 14
  • D. Tischler, On fibering certain foliated manifolds over $S^1$ , Topology, 9(1970), 153–154 \ref\key 15
  • W.P. Thurston and H.E. Winkelnkemper, On the existence of contact forms , Proc. Amer. Math. Soc., 52(1975), 345–347 \ref\key 16
  • H.E. Winkelnkemper, Manifolds as open books, Bull. Amer. Math. Soc., 79 , 45–51 (1973)