Topological Methods in Nonlinear Analysis
- Topol. Methods Nonlinear Anal.
- Volume 41, Number 2 (2013), 305-321.
Infinite many positive solutions for nonlinear first-order BVPs with integral boundary conditions on time scales
Yongkun Li and Lijuan Sun
Abstract
In this paper, we investigate the existence of infinite many positive solutions for the nonlinear first-order BVP with integral boundary conditions $$ \begin{cases} x^{\Delta}(t)+p(t)x^{\sigma}(t)=f(t,x^{\sigma}(t)), & t\in (0,T)_{\mathbb{T}}, \\ x(0)-\beta x^{\sigma}(T)=\alpha\int_{0}^{\sigma(T)}x^{\sigma}(s)\Delta g(s), \end{cases} $$ where $x^{\sigma}=x\circ\sigma$, $f\colon [0,T]_{\mathbb{T}}\times\mathbb{R^{+}}\rightarrow\mathbb{R^{+}}$ is continuous, $p$ is regressive and rd-continuous, $\alpha,\beta\geq0$, $g\colon [0,T]_{\mathbb{T}}\rightarrow \mathbb{R}$ is a nondecreasing function. By using the fixed-point index theory and a new fixed point theorem in a cone, we provide sufficient conditions for the existence of infinite many positive solutions to the above boundary value problem on time scale $\mathbb{T}$.
Article information
Source
Topol. Methods Nonlinear Anal., Volume 41, Number 2 (2013), 305-321.
Dates
First available in Project Euclid: 21 April 2016
Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461245480
Mathematical Reviews number (MathSciNet)
MR3114310
Zentralblatt MATH identifier
1292.34088
Citation
Li, Yongkun; Sun, Lijuan. Infinite many positive solutions for nonlinear first-order BVPs with integral boundary conditions on time scales. Topol. Methods Nonlinear Anal. 41 (2013), no. 2, 305--321. https://projecteuclid.org/euclid.tmna/1461245480