Topological Methods in Nonlinear Analysis

A Hartman-Nagumo type condition for a class of contractible domains

Pablo Amster and Julián Haddad

Full-text: Open access

Abstract

We generalize an existence result on second order systems with a nonlinear term satisfying the so-called Hartman-Nagumo condition. The generalization is based on the use of Gauss second fundamental form and continuation techniques.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 41, Number 2 (2013), 287-304.

Dates
First available in Project Euclid: 21 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461245479

Mathematical Reviews number (MathSciNet)
MR3114309

Zentralblatt MATH identifier
1306.34033

Citation

Amster, Pablo; Haddad, Julián. A Hartman-Nagumo type condition for a class of contractible domains. Topol. Methods Nonlinear Anal. 41 (2013), no. 2, 287--304. https://projecteuclid.org/euclid.tmna/1461245479


Export citation

References

  • J. Bebernes and K. Schmitt, Periodic boundary value problems for systems of second order differential equations , J. Differential Equations, 13 (1973), 32–47 \ref\key 2
  • M. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, New Jersey (1976) \ref\key 3
  • R. Gaines and J. Mawhin, Coincidence degree and nonlinear differential equations , Lecture Notes in Mathematics, Springer (1977) \ref\key 4 ––––, Ordinary differential equations with nonlinear boundary conditions , J. Differential Equations, 26 (1977), 200–222 \ref\key 5
  • P. Hartman, On boundary value problems for systems of ordinary nonlinear second order differential equations , Trans. Amer. Math. Soc., 96 (1960), 493–509 \ref\key 6
  • H. Hopf, Vektorfelder in $n$-dimensionalen Mannigfaltigkeiten , Math. Ann., 96 (1926/ 1927), 225–250 \ref\key 7
  • H. Knobloch, On the existence of periodic solutions of second order vector differential equations , J. Differential Equations, 9 (1971), 67–85 \ref\key 8
  • P. Habets and R. Pouso, Examples of the nonexistence of a solution in the presence of upper and lower solutions , Anziam J., 44 (2003), 591–594 \ref\key 9
  • J. Mawhin, Topological degree methods in nonlinear boundary value problems , NSF-CBMS Regional Conference in Mathematics, 40 , American Mathematical Society, Providence, RI (1979) \ref\key 10 ––––, Some boundary value problems for Hartman-type perturbations of the ordinary vector $p$-Laplacian , Nonlinear Anal., 40 (2000), 497–503 \ref\key 11 ––––, The Bernstein–Nagumo problem and two-point boundary value problems for ordinary differential equations , Qualitative Theory of Differential Equations, Farkas ed., Budapest (1981), 709–740 \ref\key 12 ––––, Boundary value problems for nonlinear second-order vector differential equations , J. Differential Equations, 16 (1974), 257–269 \ref\key 13
  • J. Mawhin and A. Ureña, A Hartman-Nagumo inequality for the vector ordinary $p$-Laplacian and applications to nonlinear boundary value problems , J. Inequal. Appl., 7 (2002), 701–725 \ref\key 14
  • J. Milnor, On the immersion of $n$-manifolds in $(n+1)$-space , Comment. Math. Helv., 30 (1956), 275–284