Topological Methods in Nonlinear Analysis

Around Ulam's question on retractions

Phichet Chaoha, Kazimierz Goebel, and Imchit Termwuttipong

Full-text: Open access

Abstract

It is known that the unit ball in infinitely dimensional Hilbert space can be retracted onto its boundary via a lipschitzian mapping. The magnitude of Lipschitz constant is only roughly estimated. The note contains a number of observations connected to this result and opens some new problems.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 40, Number 1 (2012), 215-224.

Dates
First available in Project Euclid: 21 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461243460

Mathematical Reviews number (MathSciNet)
MR3026109

Zentralblatt MATH identifier
1290.47054

Citation

Chaoha, Phichet; Goebel, Kazimierz; Termwuttipong, Imchit. Around Ulam's question on retractions. Topol. Methods Nonlinear Anal. 40 (2012), no. 1, 215--224. https://projecteuclid.org/euclid.tmna/1461243460


Export citation

References

  • M. Annoni and E. Casini, An upper bound for the Lipschitz retraction constant in $l_{1}$ , Studia Math., 180 (2007), 73–76 \ref\key 2
  • M. Baronti, E. Casini and C. Franchetti, The retraction constant in some Banach spaces , J. Approx. Theory, 120 (2003), 296–308 \ref\key 3
  • Y. Benyamini and Y. Sternfeld, Spheres in infinitely dimensional normed spaces are Lipschitz contractible, Proc. Amer. Math. Soc., 88 (1983), 439–445 \ref\key 4
  • K. Goebel, Concise Course on Fixed Point Theorems, Yokohama Publishers (2002) \ref\key 5 ––––, On the minimal displacement of points under lipschitzian mappings , Pacific J. Math., 48 , 151–163 \ref\key 6
  • K. Goebel and E. Casini, Why and how much Brouwer's fixed point theorem fails in noncompact setting , Milan J. Math., 78 (2010), 371–394 \ref\key 7
  • K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, London (1990) \ref\key 8
  • S. Kakutani, Topological properties of the unit sphere in a Hilbert space , Proc. Imp. Acad. Tokyo, 14(1943), 242–245 \ref\key 9
  • W.A. Kirk and B. Sims, Handbook of metric fixed point theory, Kluwer Academic Publishers (2000) \ref\key 10
  • D. Mauldin, The Scottish Book: Mathematical Problems from the Scottish Cafe, Birkhäuser, Boston (1981) \ref\key 11
  • Ł. Piasecki, Retracting ball onto sphere in $BC_{0}(\Bbb R)$ , Topol. Methods Nonlinear Anal., 33 (2009), 307–314 \ref\key 12
  • H. Shaefer, Geometry of spheres in Normed Linear Spaces, Lecture Notes in Pure and Applied Mathematics, 20 , Marcel Dekker, New York, Basel (1974)