Topological Methods in Nonlinear Analysis

A class of positive linear operators and applications to nonlinear boundary value problems

Jeffrey R.L. Webb

Full-text: Open access

Abstract

We discuss the class of $u_0$-positive linear operators relative to two cones and use a comparison theorem for this class to give some short proofs of new fixed point index results for some nonlinear operators that arise from boundary value problems. In particular, for some types of boundary conditions, especially nonlocal ones, we obtain a new existence result for multiple positive solutions under conditions which depend solely on the positive eigenvalue of a linear operator. We also treat some problems where the nonlinearity $f(t,u)$ is singular at $u=0$.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 39, Number 2 (2012), 221-242.

Dates
First available in Project Euclid: 21 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461243179

Mathematical Reviews number (MathSciNet)
MR2985879

Zentralblatt MATH identifier
1277.34029

Citation

Webb, Jeffrey R.L. A class of positive linear operators and applications to nonlinear boundary value problems. Topol. Methods Nonlinear Anal. 39 (2012), no. 2, 221--242. https://projecteuclid.org/euclid.tmna/1461243179


Export citation

References

  • H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces , SIAM Rev., 18 (1976), 620–709 \ref\key 2
  • V. Anuradha, D.D. Hai and R. Shivaji, Existence results for superlinear semipositone BVP's , Proc. Amer. Math. Soc., 124 (1996), 757–763 \ref\key 3
  • C.T. Cremins, A fixed-point index and existence theorems for semilinear equations in cones , Nonlinear Anal., 46 (2001), 789–806 \ref\key 4
  • K. Deimling, Nonlinear Functional Analysis, Springer–Verlag, Berlin (1985). Reprinted, Dover Publications ISBN: 0486474410 \ref\key 5
  • D.E. Edmunds, A.J.B. Potter and C.A. Stuart, Non-compact positive operators , Proc. Roy. Soc. London Ser. A, 328 (1972), 67–81 \ref\key 6
  • L. Erbe, Eigenvalue criteria for existence of positive solutions to nonlinear boundary value problems , Math. Comput. Modelling, 32 (2000), 529–539 \ref\key 7
  • D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press (1988) \ref\key 8
  • G. Infante, Positive solutions of some nonlinear BVPs involving singularities and integral BCs , Discrete Contin. Dynam. Systems Ser. S, 1 (2008), 99–106 \ref\key 9
  • G. Infante, Positive solutions of nonlocal boundary value problems with singularities , Discrete Contin. Dynam. Systems (2009);, Dynamical Systems, Differential Equations and Applications. 7th AIMS Conference, suppl., 377–384 \ref\key 10
  • J. Jiang, L. Liu and Y. Wu, Second-order nonlinear singular Sturm–Liouville problems with integral boundary conditions , Appl. Math. Comput., 215 (2009), 1573–1582 \ref\key 11
  • M.S. Keener and C.C. Travis, Positive cones and focal points for a class of $n$th order differential equations , Trans. Amer. Math. Soc., 237 (1978), 331–351 \ref\key 12
  • M.A. Krasnosel'skiĭ, Positive Solutions of Operator Equations, P. Noordhoff Ltd. Groningen (1964) \ref\key 13 ––––, Topological Methods in the Theory of Nonlinear Integral Equations, The Macmillan Co., New York (1964) \ref\key 14
  • M.A. Krasnosel'skiĭ and P.P. Zabreĭko, Geometrical Methods of Nonlinear Analysis, Springer, Berlin, (1984) \ref\key 15
  • K.Q. Lan, Multiple positive solutions of semilinear differential equations with singularities , J. London Math. Soc., 63 (2001), 690–704 \ref\key 16 ––––, Multiple positive solutions of Hammerstein integral equations and applications to periodic boundary value problems , Appl. Math. Comput., 154 (2004), 531–542 \ref\key 17 ––––, Positive solutions of semi-positone Hammerstein integral equations and applications , Commun. Pure Appl. Anal., 6 (2007), 441–451 \ref\key 18 ––––, Eigenvalues of semi-positone Hammerstein integral equations and applications to boundary value problems , Nonlinear Anal., 71 (2009), 5979–5993 \ref\key 19
  • K.Q. Lan and J.R.L. Webb, Positive solutions of semilinear differential equations with singularities , J. Differential Equations, 148 (1998), 407–421 \ref\key 20
  • J. Mallet-Paret and R.D. Nussbaum, Eigenvalues for a class of homogeneous cone maps arising from max-plus operators , Discrete Contin. Dynam. Systems, 8 (2002), 519–562 \ref\key 21 ––––, Generalizing the Krein–Rutman theorem, measures of noncompactness and the fixed point index , J. Fixed Point Theory Appl., 7 (2010), 103–143 \ref\key 22 ––––, Inequivalent measures of noncompactness and the radius of the essential spectrum , Proc. Amer. Math. Soc., 139 (2011), 917–930 \ref\key 23
  • R.H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, New York (1976) \ref\key 24
  • R.D. Nussbaum, The radius of the essential spectrum , Duke Math. J., 37 (1970), 473–478 \ref\key 25 ––––, The fixed point index for local condensing maps , Ann. Mat. Pura Appl., 89 (1971), 217–258 \ref\key 26 ––––, A periodicity threshold theorem for some nonlinear integral equations , SIAM J. Math. Anal., 9 (1978), 356–376 \ref\key 27 ––––, Eigenvectors of nonlinear positive operators and the linear Krein–Rutman theorem , Fixed Point Theory (Sherbrooke, Que., 1980), 309–330 ;, Lecture Notes in Math., 886 , Springer, Berlin–New York (1981) \ref\key 28 ––––, Periodic solutions of some nonlinear integral equations , Dynamical Systems, Proc. Internat. Sympos., Univ. Florida, Gainesville, Fla., 1976, 221–249, Academic Press, New York (1977) \ref\key 29 ––––, Eigenvectors of order-preserving linear operators , J. London Math. Soc. (2), 58 (1998), 480–496 \ref\key 30
  • W.V. Petryshyn, Generalized topological degree and semilinear equations , Cambridge Tracts in Math., 117 , Cambridge University Press, Cambridge (1995) \ref\key 31
  • Y. Sun, L. Liu, J. Zhang and R.P. Agarwal, Positive solutions of singular three-point boundary value problems for second-order differential equations , J. Comput. Appl. Math., 230 (2009), 738–750 \ref\key 32
  • J.R.L. Webb, Remarks on positive solutions of some three point boundary value problems , Dynamical Systems and Sifferential Equations (Wilmington, NC, 2002), Discrete Contin. Dynam. Systems, suppl. (2003), 905–915 \ref\key 33 ––––, Uniqueness of the principal eigenvalue in nonlocal boundary value problems , Discrete Contin. Dynam. Systems Ser. S, 1 (2008), 177–186 \ref\key 34 ––––, Remarks on $u_0$-positive operators , J. Fixed Point Theory Appl., 5 (2009), 37–45 \ref\key 35 ––––, Solutions of nonlinear equations in cones and positive linear operators , J. London Math. Soc. (2), 82 (2010), 420–436 \ref\key 36
  • J.R.L. Webb and K.Q. Lan, Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type , Topol. Methods Nonlinear Anal., 27 (2006), 91–116 \ref\key 37
  • J.R.L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach , J. London Math. Soc. (2), 74 (2006), 673–693 \ref\key 38 ––––, Nonlocal boundary value problems of arbitrary order , J. London Math. Soc. (2), 79 (2009), 238–258 \ref\key 39
  • J.R.L. Webb, G. Infante and D. Franco, Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions , Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 427–446 \ref\key 40
  • S. Wereński, On the fixed point index of noncompact mappings , Studia Math., 78 (1984), 155–160 \ref\key 41
  • G. Zhang and J. Sun, Positive solutions of $m$-point boundary value problems , J. Math. Anal. Appl., 291 (2004), 406–418