Topological Methods in Nonlinear Analysis

Location of fixed points in the presence of two cycles

Alfonso Ruiz-Herrera

Full-text: Open access

Abstract

Any orientation-preserving homeomorphism of the plane having a two cycle has also a fixed point. This well known result does not provide any hint on how to locate the fixed point, in principle it can be anywhere. J. Campos and R. Ortega in Location of fixed points and periodic solutions in the plane consider the class of Lipschitz-continuous maps and locate a fixed point in the region determined by the ellipse with foci at the two cycle and eccentricity the inverse of the Lipschitz constant. It will be shown that this region is not optimal and a sub-domain can be removed from the interior. A curious fact is that the ellipse mentioned above is relevant for the optimal location of fixed point in a neighbourhood of the minor axis but it is of no relevance around the major axis.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 38, Number 2 (2011), 407-420.

Dates
First available in Project Euclid: 20 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461184835

Mathematical Reviews number (MathSciNet)
MR2932045

Zentralblatt MATH identifier
1253.37026

Citation

Ruiz-Herrera, Alfonso. Location of fixed points in the presence of two cycles. Topol. Methods Nonlinear Anal. 38 (2011), no. 2, 407--420. https://projecteuclid.org/euclid.tmna/1461184835


Export citation

References

  • J. Aaron and M. Martelli, Stationary states for discrete dynamical systems in the plane , Topol. Methods Nonlinear Anal., 20 (2002), 15–23 \ref\key 2
  • C. Bonatti and B. Kolev, Existence de points fixes enlacés $\grave{a}$ une orbite p$\acute{e}$riodique d'un hom$\acute{e}$omorphisme du plan , Ergodic Theory Dynam. Systems, 12 (1992), 677–682 \ref\key 3
  • M. Brown, Fixed points for orientation preserving homeomorphisms of the plane which interchange two points , Pacific J. Math., 143 (1990), 37-41 \ref\key 4
  • J. Campos and R. Ortega, Location of fixed points and periodic solutions in the plane , Discr. Contin. Dynam. Systems Ser. B, 9 (2008), 517–523 \ref\key 5
  • G. Graff and P. Nowak-Przygodzki, Fixed points of planar homeomorphism of the form Identity $+$ Contraction , Rocky Mountain J. Math., 37 (2007), 1577–1592