Topological Methods in Nonlinear Analysis

Positive solutions for a $2n$th-order boundary value problem involving all derivatives of odd orders

Zhilin Yang and Donal O'Regan

Full-text: Open access

Abstract

We are concerned with the existence, multiplicity and uniqueness of positive solutions for the $2n$-order boundary value problem $$ \begin{cases} (-1)^nu^{(2n)}=f(t,u,u',-u''',\ldots, \\\hskip 1.8cm (-1)^{i-1}u^{(2i-1)},\ldots, (-1)^{n-1}u^{(2n-1)}), \\ u^{(2i)}(0)=u^{(2i+1)}(1)=0, \quad i=0,\ldots,n-1, \end{cases} $$ where $n\geq 2$ and $f\in C([0,1]\times \mathbb{R}_+^{n+1},\mathbb{R}_+)$ $(\mathbb{R}_+:=[0,\infty))$ depends on $u$ and all derivatives of odd orders. Our main hypotheses on $f$ are formulated in terms of the linear function $g(x):=x_1+2\sum_{i=2}^{n+1}x_i$. We use fixed point index theory to establish our main results, based on a priori estimates achieved by utilizing some integral identities and an integral inequality. Finally, we apply our main results to establish the existence, multiplicity and uniqueness of positive symmetric solutions for a Lidostone problem involving an open question posed by P.W. Eloe in 2000.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 37, Number 1 (2011), 87-101.

Dates
First available in Project Euclid: 20 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1461181489

Mathematical Reviews number (MathSciNet)
MR2839518

Zentralblatt MATH identifier
1233.34008

Citation

Yang, Zhilin; O'Regan, Donal. Positive solutions for a $2n$th-order boundary value problem involving all derivatives of odd orders. Topol. Methods Nonlinear Anal. 37 (2011), no. 1, 87--101. https://projecteuclid.org/euclid.tmna/1461181489


Export citation

References

  • A. R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value problems , J. Math. Anal. Appl., 116 (1986), 415–426 \ref\key 2
  • R. P. Agarwal, On fourth-order boundary value problems arising in beam analysis , Differential Integral Equations, 2 (1989), 91–110 \ref\key 3
  • R. P. Agarwal and G. Akrivis, Boundary value problems occurring in plate deflection theory , J. Comput. Appl. Math., 8 (1982), 145–154 \ref\key 4
  • R. P. Agarwal, D. O'Regan and S. Stan\v ek, Singular Lidstone boundary value problem with given maximal values for solutions , Nonlinear Anal., 55 (2003), 859–881 \ref\key 5
  • R. P. Agarwal and P. J. Y. Wong, Lidstone polynomials and boundary value problems , Comput. Math. Appl., 17 (1989), 1397–1421 \ref\key 6
  • R. I. Avery, J. M. Davis and J. Henderson, Three symmetric positive solutions for Lidstone problems by a generalization of the Leggett–Williams theorem , Electron. J. Differential Equations, 40 (2000), 1–15 \ref\key 7
  • Z. Bai and W. Ge, Solutions of $2n$th Lidstone boundary value problems and dependence on higher order derivatives , J. Math. Anal. Appl., 279 (2003), 442–450 \ref\key 8
  • S. N. Bernstein, Sur les équations du calcul des variations , Ann. Sci. Ecole Norm. Sup., 29 (1912), 431–485 \ref\key 9
  • J. M. Davis, P. W. Eloe and J. Henderson, Triple positive solutions and dependence on higher order derivatives , J. Math. Anal. Appl., 237 (1999), 710–720 \ref\key 10
  • C. De Coster, C. Fabry and F. Munyamarere, Nonresonance conditions for fourth-order nonlinear boundary value problems , Internat. J. Math. Sci., 17 (1994), 725–740 \ref\key 11
  • M. A. Del Pino and R. F. Manasevich, Existence for a fourth-order nonlinear boundary problem under a two-parameter nonresonance condition , Proc. Amer. Math. Soc., 112 (1991), 81–86 \ref\key 12
  • J. Ehme and J. Henderson, Existence and local uniqueness for nonlinear Lidstone boundary value problems , J. Ineq. Pure Appl. Math., 1 (2000, no. 1). Article 8 \ref\key 13
  • P. W. Eloe, Nonlinear eigenvalue problems for higher order Lidstone boundary value problems , Electron. J. Qual. Theory Differential Equations, 2 (2000), 1–8 \ref\key 14
  • H. Feng, D. Ji and W. Ge, Existence and uniqueness of solutions for a fourth-order boundary value problem , Nonlinear Anal., 70 (2009), 3561–3566 \ref\key 15
  • D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Boston (1988) \ref\key 16
  • Z. Liu and F. Li, Multiple positive solutions of nonlinear two-point value problems , J. Math. Anal. Appl., 203 (1996), 610–625 \ref\key 17
  • Y. Ma, Existence of positive solutions of Lidstone boundary value problems , J. Math. Anal. Appl., 314 (2006), 97–108 \ref\key 18
  • M. Nagumo, Über die Differentialgleichung $y''=f(t,y,y')$ , Proc. Phys. Math. Soc. Japan, 19 (1937), 861–866 \ref\key 19
  • Y. Wang, On $2n$th-order Lidstone boundary value problems , J. Math. Anal. Appl., 312 (2005), 383–400 \ref\key 20 ––––, On fourth-order elliptic boundary value problems with nonmonotone nonlinear function , J. Math. Anal. Appl., 307 (2005), 1–11 \ref\key 21
  • Z. Wei, Existence of positive solutions for $2n$th-order singular sublinear boundary value problems , J. Math. Anal. Appl., 306 (2005), 619–636 \ref\key 22 ––––, Positive solutions for $2n$th-order singular sub-linear $m$-point boundary value problems , Appl. Math. Comput., 182 (2006), 1280–1295 \ref\key 23 ––––, A necessary and sufficient condition for $2n$th-order singular superlinear $m$-point boundary value problems , J. Math. Anal. Appl., 327 (2007), 930–947 \ref\key 24
  • Z. Yang, Existence and uniqueness of positive solutions for a higher order boundary value problem , Comput. Math. Appl., 54 (2007), 220–228 \ref\key 25
  • Z. Yang, D. O'Regan and R. P. Agarwal, Positive solutions of a second-order boundary value problem via integro-differential equation arguments , Appl. Anal., 88 (2009), 1197–1211 \ref\key 26
  • Q. Yao, Existence of $n$ positive solutions to general Lidstone boundary value problems , Acta Math. Sinica, 48 (2005), 365-376, (in Chinese) \ref\key 27
  • B. Zhang and X. Liu, Existence of multiple symmetric positive solutions of higher order Lidstone problems , J. Math. Anal. Appl., 284 (2003), 672–689 \ref\key 28
  • Z. Zhao, Existence of positive solutions for $2n$th-order singular semipositone differential equations with Sturm–Liouville boundary conditions , Nonlinear Anal., 72 (2010), 1348–1357