Topological Methods in Nonlinear Analysis

Existence of a solution to a non-monotone dynamic model in poroplasticity with mixed boundary conditions

Sebastian Owczarek

Full-text: Open access

Abstract

In this note, we investigate a non-monotone and non-coercive dynamic model of poroplasticity with mixed boundary conditions. The existence of the solution to this non-monotone model, where the inelastic constitutive equation is satisfied in the sense of Young measures, is proved using the coercive and monotone approximations.

Article information

Source
Topol. Methods Nonlinear Anal., Volume 43, Number 2 (2014), 297-322.

Dates
First available in Project Euclid: 11 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.tmna/1460381509

Mathematical Reviews number (MathSciNet)
MR3236971

Zentralblatt MATH identifier
1360.74032

Citation

Owczarek, Sebastian. Existence of a solution to a non-monotone dynamic model in poroplasticity with mixed boundary conditions. Topol. Methods Nonlinear Anal. 43 (2014), no. 2, 297--322. https://projecteuclid.org/euclid.tmna/1460381509


Export citation

References

  • R.A. Adams and J.J.F. Fournier, Sobolev Spaces, Second edition, Pure and Applied Mathematics (Amsterdam), 140 , Elsevier/Academic Press, Amsterdam (2003) \ref\key 2
  • H.-D. Alber, Materials with memory , Lecture Notes in Math., 1682 , Springer, Berlin, Heidelberg, New York (1998) \ref\key 3
  • H.-D. Alber and K. Chełmiński, Quasistatic problems in viscoplasticity theory \romI: Models with linear hardening, Operator Theoretical Methods and Applications to Mathematical Physics (I. Gohberg et al., eds.), The Erhard Meister memorial volume, 105–129, Birkhäuser, Basel (2004) \ref\key 4
  • J.P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin, Heidelberg, New York (1984) \ref\key 5
  • J.M. Ball, A version of the fundamental theorem for Young measures , PDEs and continuum models of phase transitions (Nice, 1988), 207–215, Lecture Notes in Phys., 334 Springer, Berlin (1989) \ref\key 6
  • K. Chełmiński, Coercive limits for a subclass of monotone constitutive equations in the theory of inelastic material behaviour of metals , Roczniki PTM: App. Math., 40 , 41-81 (1997) \ref\key 7 ––––, Coercive approximation of viscoplasticity and plasticity , Asymptot. Anal., 26 , 115–135 (2001) \ref\key 8
  • K. Chełmiński and P. Gwiazda, Monotonicity of operators of viscoplastic response: application to the model of Bodner–Partom , Bull. Pol. Acad. Sci. Tech. Sci., 47 , 191–208 (1999) \ref\key 9 ––––, Nonhomogeneous initial-boundary value problems for coercive and self-controlling models of monotone type , Contin. Mech. Thermodyn., 12 , 217–234 (2000) \ref\key 10
  • K. Chełmiński and P. Gwiazda, Convergence of coercive approximations for strictly monotone quasistatic models in deformation teory , Math. Methods Appl. Sci., 30 , 1357–1374 (2007) \ref\key 11
  • R.J. DiPerna and A. Majda, Reduced Hausdorff dimension and concentration-cancellation for two-dimensional incompressible flow , J. Amer. Math. Soc., 1 , 59–95 (1988) \ref\key 12
  • W. Ehlers, Constitutive equations for granular materials in geomechanical context , Continuum Mechanics in Environmental Sciences and Geophysics (K. Hutter, ed.), CISM Courses and Lectures, 337 , Springer–Verlag, Wien (1993), 313–402 \ref\key 13
  • P. Gwiazda, On measure-valued solutions to a two-dimensional gravity-driven avalanche flow model , Math. Methods Appl. Sci., 28 , 2201–2223 (2005) \ref\key 14
  • P. Gwiazda, J. Málek and A. Świerczewska, On flows of an incompressible fluid with a discontinuous power-law-like rheology , Comput. Math. Appl., 53 , 531–546 (2007) \ref\key 15
  • J. Málek, J. Nečas, M. Rokyta and M. R\ouǎička, Weak and measure-valued solutions to evolutionary \romPDEs, Applied Mathematics and Mathematical Computation, 13, Chapman and Hall, London (1996) \ref\key 16
  • S. Owczarek, A Galerkin method for Biot consolidation model , Math. Mech. Solids, 15 , 42–56 (2010) \ref\key 17 ––––, Convergence of coercive approximations for a model of gradient type in poroplasticity , Math. Methods Appl. Sci., 32 , 1541–1563 (2009) \ref\key 18 ––––, Convergence of a monotonisation procedure for a non-monotone quasi-static model in poroplasticity , J. Math. Anal. Appl., 364 , 599–608 (2010) \ref\key 19
  • R.E. Showalter, Diffusion in poro-elastic media , J. Math. Appl., 251 , 310–340 (2000) \ref\key 20
  • R. Temam, Problèmes mathématiques en plasticité, Bordas, Paris (1983)